Energía SOLAR, aprovechando los excedentes

Controlando la conexión y desconexión de una toma de enchufe, en función de los excedentes de energía eléctrica que genera una instalación solar, es posible adaptar los consumos de la vivienda de forma automática, y reducir el coste de la factura.

Toma de red inteligente

Hace unos días  monté un controlador de encendido y apagado automático en dos equipos de aire acondicionado, para aprovechar una parte de la potencia excedente que generan los paneles solares en mejorar la climatización de la vivienda.

Climatización GRATIS… automatizando los excedentes de energía Solar

Toma de enchufe inteligente

Ahora complementaré este sistema de control, añadiendo una toma de alimentación portátil.  Esta toma de red la utilizaré para conectar equipos auxiliares, los cuales no necesiten permanecer siempre encendidos, consiguiendo así un ahorro extra en la factura eléctrica.

La toma de red se podría conectar a una regleta múltiple, y controlar varios dispositivos a la vez. La corriente máxima que soporten los contactos del interruptor que utilice,  definirán la potencia máxima de uso. La electrónica de este controlador de red no varía en función de la potencia que maneja, sólo se necesita definir los umbrales de encendido y apagado en el firmware, antes de cargarlo en el módulo ESP32.

Los posibles usos que podría tener esta toma de red son muchos. Por ejemplo para alimentar un termo de agua caliente auxiliar, un calefactor o radiador portátil, la depuradora de una piscina y su climatización, el punto de carga para un coche eléctrico… y cualquier otra cosa que se nos ocurra. Para el uso que yo le voy a dar, he fijado sus dos preset de encendido por excedente de potencia solar en 1,2kW y 2,2kW. Una vez programado el módulo, se podrá elegir el preset de funcionamiento a través del interface Web del ESP32. La desconexión automática de ambos preset es la misma, y siempre desconectará la carga cuando la potencia solar excedente sea inferior a 100W.

PRESET de encendido y apagado

En el montaje anterior, como protección para el aire acondicionado, configuré el intervalo de tiempo mínimo entre dos conmutaciones automáticas consecutivas con 3 minutos. En este caso, como la toma de red la utilizaré para otros usos, he reducido el tiempo de protección a 1 minuto, consiguiendo así un control de encendido/apagado más rápido.

Configuración inicial del interruptor de red inteligente

Los interruptores de RED

Los interruptores de red más utilizados son los de tipo mecánico, principalmente por su bajo precio y gran aislamiento cuando los contactos están abiertos. Para automatizar la conexión y desconexión eléctrica de cualquier dispositivo se utilizan relés, también llamados contactores.

Los relés funcionan a partir de una tensión de control de baja corriente, normalmente suministrada por un autómata o circuito micro-controlador. El accionamiento que permite el paso de corriente a la salida de un relé, puede ser mecánico o electrónico.

Relé mecánico

El problema principal de un relé de tipo mecánico, es la degradación de sus contactos cuando trabaja con corrientes altas, pudiendo producir con el tiempo falsos contactos y chisporroteo. Otro inconveniente es que su tiempo de accionamiento, al ser mecánico es lento y su retardo no siempre es el mismo, quedando limitando su uso para controlar equipos que no requieran velocidad ni precisión en sus maniobras.

Relé de estado sólido (SSR)

Los relés de estado sólido, también conocidos por su abreviatura en inglés SSR, no tienen partes móviles, son silenciosos, rápidos y no sufren degradación. El inconveniente principal es que no soportan picos de corriente superior al definido por el fabricante, porque se averían. En caso de avería, los relés SSR  normalmente se quedan con sus dos salidas en cortocircuito, manteniendo la carga permanentemente conectada a la red eléctrica y consumiendo energía.

Esquema del relé SSR

Al igual que los relés electromecánicos, los SSR se accionan con una pequeña corriente en su entrada. La tensión y su rango de funcionamiento, tanto de entrada como salida, dependen del modelo de SSR que se elija.

Antes de comprar un relé de estado sólido (SSR) es importante saber que existen tres tipos, tienen diferentes rangos de tensión en su entrada y salida, y su corriente de trabajo máxima está limitada. Los SSR se identifican en su referencia con las dos letras finales, indicando si se activan con tensión continua o alterna:

  • DA: Tensión continua en la entrada y alterna en la salida
  • AA: Tensión alterna en la entrada y en la salida
  • DD: Tensión continua en la entrada y en la salida

Detalles del Montaje

Para hacer este interruptor automático, he utilizado un relé SSR-40 tipo DA. Es un relé sólido que se activa con una tensión continua en su entrada, y permite controlar el paso de una tensión alterna de 40A como máximo en sus dos terminales de salida. El inconveniente es que para soportar esa corriente máxima de 40A, sería necesario montarlo con un disipador.  Como voy a utilizar este SSR sin disipador, con el fin de reducir el tamaño del circuito, he limitado su carga máxima intercalado un fusible rápido de 15A. Con esta corriente se podrían controlar consumos de hasta 3kW sin problemas,  potencia más que suficiente para el uso que le quiero dar.

Esquema del interruptor de red inteligente

El rango de tensión de control de este SSR va desde 3 hasta 32V de tensión continua. Como lo voy a controlar con un ESP32 y funcionan a 3,3V, tensión muy próxima a la mínima de control de este SSR, he medido todo antes de diseñar el circuito. He comprobado que este SSR funciona conectando una tensión continua a partir de 2,5V, y consume aproximadamente 8mA. La corriente de control sube ligeramente a medida que sube la tensión de disparo, con 5V consume 10mA aproximadamente.  Así que no habría problema para controlarlo directamente con el ESP32. Para proteger el pin de control del módulo ESP32, he intercalado un transistor NPN configurado en modo seguidor de emisor, conectando el colector del transistor al +5V de la fuente de alimentación. Así la corriente de control del SSR la suministrará la fuente de alimentación, y no pasará a través del pin de salida del módulo ESP32.

Los componentes que hay que añadir  en este montaje son muy pocos, y al igual que hice con el controlador del aire acondicionado, los he montado y cableado todos en una placa aislante. He utilizado también los mismos pines del módulo ESP32, pero en este caso invirtiendo los pines de entrada y salida. He utilizado como salida el pin GIO2, porque así el LED azul del módulo ESP32 se encenderá cuando se esté disparando el control del SSR. Para disponer de esta indicación en el exterior y al mismo tiempo comprobar que el transistor funciona correctamente, he añadido otro LED junto con su resistencia limitadora, conectado en los terminales de entrada del SSR.

El pin TMS/GPIO14 está configurado como entrada en modo Pull-Up, y se utiliza con un interruptor a masa, para  forzar su funcionamiento a modo manual. Cuando el interruptor está cerrado, el módulo ESP32 mantendrá de forma indefinida la tensión de salida de 230VAC, aunque la potencia del excedente solar sea inferior a 100W. De la misma forma, también es posible conectar y desconectar la tensión de salida en cualquier momento a distancia, utilizando el interface Web del ESP32.

Interface WEB

A través del interface Web del ESP32 es posible deshabilitar por completo el circuito de control, evitando así que el módulo SSR entregue tensión a su salida, incluso aunque estuviera su interruptor en modo manual. Cuando se deshabilita el control del SSR, el módulo ESP32 deja de realizar consultas al inversor  y desaparecen las medidas de potencia, tanto en el interface Web como el display  OLED. En este caso el display OLED funcionaría en modo reloj, mostrando únicamente la fecha y hora local con precisión.

Interface WEB del interruptor inteligente

Para evitar las molestias que podría ocasionar la luz del display OLED durante la noche, he añadido la opción de su apagado nocturno. Cuando el display  OLED está configurado en modo día, nunca se apaga. Y si se configura en modo noche, el display  OLED se encenderá a partir de las 7:00 y se apagará a partir de las 23:00. Esta modificación también la he añadido en la última actualización del firmware del controlador del aire acondicionado (v1.54).

Firmware del ESP32

El firmware que necesitas para programar el microcontrolador ESP32, lo puedes descargar de forma gratuita desde el siguiente enlace:

https://github.com/J-RPM/Consumption-control-of-surplus-solar-energy

Caja 3D

Piezas 3D, para la toma de red automática

Los ficheros .stl que necesitas para fabricar estas piezas, lo puedes descargar desde el siguiente enlace: https://www.thingiverse.com/thing:6135400

¿Dónde fabricar el PCB?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos, pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

Logo: PCBWay

https://pcbway.com/g/r7N1ct

 

Interruptor inteligente

Diseño y construcción de un interruptor inteligente, capaz de cortar la alimentación de todos los dispositivos conectados en una regleta de enchufes. El circuito detecta el consumo en una toma de red (Master), y desconecta todo (incluido el propio controlador) cuando se apaga el dispositivo conectado a la toma ‘Master’. Así en reposo (Standby), el consumo total de todo el conjunto será nulo.

Regletas de RED inteligentes

Buscando un poco por Internet, podemos encontrar regletas de alimentación inteligentes. La mayoría de ellas nos permiten conectar y desconectar la alimentación de todos los enchufes desde un dispositivo móvil, programar la hora de encendido y apagado, incluso medir el consumo y  calcular su coste.

Regletas inteligentes en Internet

El uso de regletas inteligentes podría suponer un gran ahorro energético, pero hay que tener en cuenta que estas regletas de por sí ya incorporan un consumo extra… y su circuito de control consume energía las 24 horas del día.

Interruptor inteligente

La idea de este montaje, es la de conseguir el apagado automático de una serie de dispositivos, al detectar el apagado del equipo principal (Master). Por ejemplo, si conectamos a la toma principal  de este circuito la CPU de nuestro PC,  y el resto de dispositivos (monitor, impresora, escáner, etc)  a la toma auxiliar; al desconectar la CPU se desconectaría la alimentación de todo el conjunto… incluso la del propio circuito de control. De esta manera no quedaría ningún equipo consumiendo en modo ‘Standby’, y el consumo total sería nulo.

Interruptor inteligente montado

A continuación se muestra el esquema del circuito de control, encargado de cortar la alimentación en todas las tomas de red, cuando detecte un caída de consumo en la toma ‘Master’.

Esquema: Interruptor inteligente

Las tensiones que obtendremos como muestra en la entrada del ATtiny cambiarán dependiendo de la inductancia y características del transformador que utilicemos (filtro EMI), además del tipo de carga que conectemos en la toma ‘Master’ (carga reactiva o lineal).

Principio de funcionamiento

El circuito está basado en la transferencia de tensión que aporta una de los dos  bobinas de un filtro EMI, al paso de la corriente de RED por el otro devanado.  Este montaje funciona como un transformador de corriente, entregando una tensión en el devanado secundario, proporcional a la corriente que circule por el primario. En este caso, la transferencia de tensión no es lineal con la potencia, pues dependerá del tipo de carga que conectemos en la toma ‘Master’. Si la carga se comporta como una resistencia pura,  la transferencia de tensión será menor que si tuviera una componente reactiva.

Medidas de tensión con diferentes cargas

El circuito detector de umbral está construido con Arduino, utilizando un ATtiny 85. Este pequeño micro controlador tiene sólo 8 pines y puede funcionar con un oscilador interno, lo que permite hacer uso de casi todos sus terminales.

Calibración y ajuste de los umbrales

En este montaje se han dedicado dos pines del ATtiny para poder configurar hasta 4 umbrales distintos de funcionamiento. Así podemos elegir el umbral de detección más adecuado al equipo que vayamos a conectar en la toma ‘Master’. Como es lógico suponer, los 4 umbrales los podremos calibrar y modificar con Arduino, antes de programar el ATtiny.

Ajuste y calibrado de los umbrales

Para facilitar el ajuste de los umbrales y la calibración de la escala, podemos cargar el código ‘Regleta_TEST.ino’ que se adjunta en la descarga, y utilizar la placa de desarrollo Arduino UNO. Para realizar este ajuste, colocamos un potenciómetro de 10K entre el positivo y negativo de la fuente de 5V, y conectamos el cursor del potenciómetro con la entrada A2 de Arduino UNO. El proceso a seguir para la calibración de la escala y fijación de los umbrales. se explica en el video final.

Los archivos que necesitas para programar el Arduino UNO y el ATtiny, lo puedes descargar de forma gratuita desde el siguiente enlace:

Interruptor_I.rar

¿Dónde fabricar el PCB?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos, pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

Logo: PCBWay

https://www.pcbway.es/

PCB: Interruptor inteligente

 

Acceso a los GERBER de este PCB

PCB from PCBWay

Link of my shared project

Descarga del ficheros 3D:

Intelligent switch

Diseño 3D