Reloj Pac-Man con ESP32 & UTF-8

Actualización del firmware (v1.44) para el Reloj-Texto construido con 4 matrices LED, y controlado con el microprocesador ESP32. Con esta actualización, el display podrá mostrar los caracteres latinos de uso más frecuente: áéíóúü ÁÉÍÓÚÜ cÇ ñÑ. También se incluyen los avisos con voz sintetizada, y efectos gráficos Pac-Man.

Reloj-Texto con dos alarmas y 2 husos horarios

UNICODE & UTF-8

La conexión entre diferentes redes de ordenadores provocó la necesidad de crear un estándar que contemplara el juego de caracteres gráficos de cualquier lengua, incluyendo ideogramas, caracteres árabes, chinos, etc.

Caracteres UNICODE

El año 1991 se anunció públicamente la creación de Internet, y ese mismo año el Consorcio Unicode y la ISO desarrollaron ambos un estándar para codificar los caracteres:  Unicode – ISO / IEC 10646. Ambos estándares se pueden considerar equivalentes, si tenemos en cuenta que el repertorio, los nombres de caracteres y los puntos de código del estándar ‘Unicode Versión 2.0’, coinciden exactamente con los de ISO / IEC 10646-1: que fue publicado en 1993.

Actualmente, la codificación dominante es UTF-8, que es una codificación de ancho variable diseñada para la compatibilidad con versiones anteriores de ASCII, y para evitar las complicaciones con las marcas de orden de bytes que existen con UTF-16 y UTF-32 . Además, el 93% de todas las páginas web están codificadas en UTF-8 y el Grupo de trabajo de ingeniería de Internet (IETF) requiere que todos los protocolos de Internet identifiquen las codificación UTF-8. También el Consorcio de correo de Internet (IMC), recomienda que todos los programas de correo electrónico puedan mostrar y crear correo utilizando UTF-8.

Codificación UTF-8

Los primeros 127 caracteres de cualquier tabla de caracteres de procedencia anglosajona o latina, son comunes y su origen es la tabla de caracteres ASCII. Este conjunto de caracteres se pueden codificar dentro de una matriz binaria de 7 bit., y son los caracteres que por defecto muestra cualquier display.

Caracteres ASCII de 7 bits

Si queremos mostrar los caracteres específicos de cualquier lengua, por ejemplo las letras acentuadas, tendremos que ampliar de tamaño la matriz del display que almacena los caracteres en memoria, y asociar una posición específica a cada uno de los caracteres dentro de esa matriz.  De esta forma, la tabla de caracteres que almacena el display no se corresponderá con el código del carácter que recibamos a través del interface Web. Así el procesador del display tendrá que comprobar el código del carácter que recibe, y si es superior al 127,  reposicionar el código para apuntar al gráfico que tenemos asociado a ese código entrante, dentro de la matriz gráfica del display. El tamaño de la matriz gráfica del display suele ser de 8 bit, y con esto es posible almacenar 127 caracteres extra, que podrían ser letras acentuadas, logotipos o cualquier dibujo.

Integración UTF-8 en el display

Si pretendemos que los caracteres de este reloj se puedan programar a través de un interface Web, es necesario utilizar una codificación de caracteres estándar, y la más versátil es la codificación UTF-8 de 2 Bytes.

Este reloj utiliza 3 tipos de fuentes gráficas, dos de ellas limitadas a los 10 números, utilizadas para mostrar los dígitos de la hora en formato estrecho y ancho, y la otra es la que almacena los caracteres ASCII, desde el espacio cuyo código es 32 en decimal, hasta el 126 que es la tilde de la letra eñe, más conocida como virgulilla ~. A continuación, y a partir del código 127, es donde se almacenan los caracteres extra.

Hay muchas formas de almacenar las fuentes gráficas en un display, pero la forma más eficiente es asociar un Byte a los 8 pixeles que tiene cada columna de la matriz LED. Así es más rápida la gestión que tiene que hacer el procesador para desplazar los textos por el display.

La fuente de textos y gráficos de este display es de ancho variable, entre 2 y 5 pixel de ancho por 8 pixel de altura. Así se limita el ancho a las letras que no lo necesiten, por ejemplo el espacio, y se pueden mostrar más caracteres en el display.  Para localizar los caracteres en la matriz, todos ellos ocupan 6 Bytes. El primer Byte indica el ancho del carácter, que se corresponde al número de Bytes que tiene que leer el procesador para formar la letra en el display.

Para facilitar la interpretación visual de los gráficos, los 5 Bytes de cada carácter se suelen escribir en formato binario, pero también se podría escribir en formato hexadecimal o decimal si se quisiera reducir el tamaño del archivo en el editor.

En el gráfico siguiente. vemos el esquema de codificación de caracteres UNICODE, junto con UTF-16 y UTF-8.

Cuando se asigna un código a un carácter, se dice que dicho carácter está codificado. El espacio para códigos tiene 1.114.112 posiciones posibles (0x10FFFF). En el grafico anterior vemos el espacio de códigos dividido en tramos, con el fin de mostrar los diferentes esquemas de codificación UTF. Los puntos de código se representan utilizando notación hexadecimal agregando el prefijo U+.

Actualmente los sistemas operativos limitan la tabla UNICODE a los primeros 65.536 caracteres (0xFFFF), y el valor hexadecimal se muestra añadiendo ceros a la izquierda si es necesario, hasta completar los 4 dígitos hexadecimales.

Es conveniente aclarar, que los sistemas operativos disponen de diferentes tablas de caracteres, algunas de ellas son privadas, y no se deberían utilizar en un documento público con acceso a Internet, ya que no son un estándar.

Internamente en un PC se podría crear un documento utilizando cualquier fuente de caracteres, con el fin de mostrar algún gráfico en especial. El problema es si ese mismo documento se abriese utilizando una fuente de caracteres diferente; porque algunos caracteres ya no serían los mismos.

Si queremos codificar caracteres en UTF-8, limitando su longitud máxima a dos Bytes por carácter, sólo podremos codificar los primeros 2.048 caracteres UNICODE, y recibiremos caracteres de 11 bits. Así cuando recibamos un Byte en UTF-8 que comience con 110, sabremos que se trata de un carácter doble, y los 5 bits siguientes de ese Byte serán los 5 bits más significativos del carácter UNICODE que estamos recibiendo, sin olvidar que este carácter  tiene una longitud de 11 bits. A continuación recibiremos el segundo Byte, el cuál empezará con los bits 10, y a continuación recibiremos los 6 bits menos significativos del carácter UNICODE.

Decodificación UTF-8

  1. Cuando el bit más significativo de un Byte en UNICODE comience con un 0, la longitud del código UTF-8 no cambia, manteniendo el mismo valor UNICODE, y respetando así su compatibilidad con la tabla ASCII.
  2. Si se recibe un Byte en UTF-8 que empieza con los bits 110, su longitud será de 2 Bytes, y el segundo Byte empezará siempre por 10.
  3. Si se recibe un Byte en UTF-8 que empieza con los bits 1110, su longitud será de 3 Bytes, y los dos Bytes siguientes al primero empezarán con 10.
  4. Si se recibe un Byte en UTF-8 que empieza con los bits 11110, su longitud será de 4 Bytes y los 3 Bytes siguientes al primero empezarán con 10.

Esquema de montaje

Para que este display Reloj-Texto funcione, sólo hay conectar 5 hilos entre un lateral del display LED y el módulo ESP32. El sonido de la alarma y el audio sintetizado sale por el pin GPIO26 del módulo ESP32, y hay que conectarlo a un amplificador de audio con su altavoz.

Firmware (v1.44)

El archivo que necesitas para programar el ESP32, lo puedes descargar de forma gratuita desde el repositorio GitHubClock-Text_ESP32

Interface Web y ajustes

Este reloj se controla a través de cualquier dispositivo móvil, siempre que esté conectado a la misma red WiFi. El reloj dispone de 2 interfaces Web diferentes, pudiendo elegir su modo de funcionamiento. El reloj funciona de forma muy parecida en ambos modos, presentando la hora de acuerdo al formato que se haya configurado, y cada 30 segundos mostrando un rotación de texto.

  • Cuando el display está configurado en modo RELOJ: el texto será el día de la semana y la fecha; pero sólo en caso de que estuviese habilitada su presentación, porque en caso contrario el reloj siempre mostrará la hora.

Interface RELOJ: se puede modificar el huso horario al cuál se debe sincronizar el reloj, realizar los ajustes de formato y presentación de la hora, y modificar el brillo del display.

  • Cuando el display está funcionando  en modo MENSAJE: cada 30 segundos intercalará una rotación del texto que tenga programado.

Interface MENSAJE: se puede ajustar la velocidad de desplazamiento del texto, modificar el contenido del mensaje, y fijar la hora y repeticiones de sus dos alarmas.

Ambos interfaces disponen de un botón para cambiar su modo de funcionamiento, teniendo en cuenta que el reloj primero se reiniciará, sincronizando de nuevo la fecha y hora con el servidor NTP que le corresponda al uso horario ajustado. Al reiniciar el reloj, el punto de acceso WiFi al que se conecta,  podría asignar una dirección IP diferente a la anterior. También se han incorporado dos botones nuevos, uno para mostrar la hora con voz, muy interesante para personas invidentes, y el otro para forzar el borrado del display en cualquier momento, mediante la aparición de Pac-Man.

Con esta nueva versión (v1.44), es posible escribir textos utilizando letras acentuadas y la letra Ñ, tanto en mayúsculas como en minúsculas. Además, si el reloj está configurado con el huso horario de España y el formato de presentación de la hora es el Europeo, los textos del día de la semana y fecha, aparecerán traducidos al Español.

¿Necesitas fabricar un circuito impreso?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

PCB de prototipo gratis y con plazo de entrega rápido: https://www.pcbway.es/

Logo: PCBWay

 

 

 

Un comentario en «Reloj Pac-Man con ESP32 & UTF-8»

Si tienes alguna duda o sugerencia, deja un comentario.