Construye un Reloj SMD

Fabricación de un Reloj-Cronómetro-Temperatura, encadenando 4 módulos SMD de 7 segmentos con control serie. El controlador de este reloj está construido a partir del micro controlador AT89S52, con encapsulado TQFP de 44 pines (SMD).

Hora en el display

ESQUEMAS

CPU: Reloj SERIE

 

Display: Reloj SERIE

Módulo RTC: DS1302

Las comunicaciones entre el micro-controlador y el chip de reloj DS1302 se realizan mediante 3 hilos:

  1. Reloj (SCLK)
  2. Entrada/Salida de datos (I/O)
  3. Habilitación (CE)
Módulo RTC: DS1302
Módulo RTC: DS1302

El módulo RTC ya incluye el cristal de cuarzo que necesita el chip DS1302, y una pila de 3V para mantener sus datos cuando falta la alimentación. La conexión entre este módulo y la CPU es de 5 hilos, 2 de la alimentación y 3 de control.

Comunicaciones con DS1302
Comunicaciones con DS1302

Sensor de temperatura: DS18B20

El control de este sensor de temperatura es bidireccional y se realiza mediante un sólo pin, así su encapsulado sólo tiene 3 pines: VCC, GND y Datos.

Sensor: DS18B20
Sensor: DS18B20

El DS18B20 se puede comprar con encapsulado normal, su aspecto es el de un transistor, o ya montado dentro de una cápsula de acero inoxidable. El encapsulado en acero inoxidable permite sumergir el sensor en líquidos, y también es muy aconsejable para utilizarlo en el exterior.

El chip DS18B20 es un sensor temperatura digital,  su resolución es configurable entre 9 y 12 bits. Por defecto, de fábrica está configurado con 12 bits. A máxima resolución, sus últimos 4 bits se corresponden con las lecturas decimales de: 0,5°/ 0,25° / 0,125° / 0,0625°.  Puedes ver más detalles técnicos de este sensor en el siguiente artículo:

Firmware Reloj LED #2 (Temperatura, Hora de Verano)

FUENTE DE ALIMENTACIÓN

Para alimentar este reloj se necesita una fuente de alimentación de 12 VDC, con una corriente mínima de 200 mA. La solución más barata y eficaz, es incluir dentro de la caja del reloj una pequeña fuente de alimentación conmutada de 12V / 400 mA.

Fuente conmutada 12V

CONFIGURACIÓN

Para cambiar los datos de fecha, hora, cronómetro y el resto de parámetros de configuración, se utilizan dos pulsadores:

  1. MODE
  2. PLUS

Para modificar los datos del reloj, seguir el siguiente diagrama de configuración:

Configuración RELOJ SERIE

SELECCIONAR MODO: RELOJ/CRONÓMETRO

El modo de funcionamiento RELOJ/CRONÓMETRO se determina durante la fase de arranque, mientras se está mostrando en el display  un mensaje de texto rotando, en la que se muestra la versión del firmware. Si no se toca ningún pulsador, el modo de funcionamiento será: RELOJ. Para cambiar a modo CRONÓMETRO en cualquier momento, seguir los siguientes pasos:

  • Pulsar los dos botones a la vez: RESET
  • Cuando aparezca el mensaje rotante, mantener pulsado el botón 1 (MODE)

Cronómetro en el display

Una vez que que hayamos entrado en el modo CRONÓMETRO, ya podremos configurar sus parámetros de funcionamiento. Estos valores se guardarán en el chip de memoria del reloj (DS1302), y estos serán los nuevos valores de arranque del cronómetro. Al igual que sucede con los parámetros del reloj, tendremos que tener conectada la pila de tampón en el chip, si no queremos perder todos los datos cuando falte la alimentación.

Detalles de la presentación del Display

Cuando se está funcionando en modo RELOJ, es posible seleccionar entre 3 tipos de presentación. La información que muestra el display se cambia mediante una breve pulsación del botón 2 (PLUS):

  1. Hora / (*) Alterno: Hora y Temperatura
  2. Temperatura
  3. Alterno: Hora, Fecha y Temperatura

(*) El modo alterno de la presentación 1ª, se muestra en caso de que se active la alarma de temperatura en el menú de configuración. En caso contrario, la presentación 1ª mostrará la hora de forma permanente.

Temperatura en el display

Cuando se active el modo de presentación alterno, la temperatura se mostrará de forma síncrona con el reloj, y lo hará cada 5 segundos. Entre el segundo 5 y el 55 de cada minuto, nunca se mostrará en el segundo ‘0’ de cada minuto. La temperatura sólo aparecerá durante un segundo de cada 5, en total 11 veces en cada minuto.

Alarma de Temperatura

La lectura del sensor de Temperatura se realiza cada 10 segundos. De manera que entre dos presentaciones sucesivas de 5 segundos, sólo una de las lecturas será en tiempo real. Cuando está utilizando la presentación 1ª en modo alterno, los segundos acabados en ‘0’ mostrarán la temperatura leída anteriormente, excepto en el segundo ‘0’ de cada minuto que no se muestra. En el caso de que la temperatura sobrepasara alguno de los dos umbrales de alarma, el aviso acústico se realizará cuando el valor acaba de ser leído. Es decir, la alarma de temperatura sólo sonaría en los segundos acabados en ‘5’.

Alarmas horarias

El reloj permite configurar 2 alarmas horarias, sin prioridad entre ellas pero siguiendo este criterio: Cuando una de las dos alarmas se dispara, mientras permanezca en su periodo activo, la otra alarma nunca podrá dispararse. 

Las dos alarmas horarias pueden valer para los 7 días de la semana, o estar limitadas a los 5 días laborables, quedando inactivas todos los Sábados y Domingos. En modo RELOJ, el punto decimal del dígito de la derecha (esquina inferior derecha del display) esta asociado a la alarma horaria. Las alarmas horarias pueden configurarse para que suenen una sola vez (1 minuto si no se silencia antes) o con repeticiones. Las repeticiones se realizarán cada 5 segundos. Para silenciar el sonido de una alarma, realizar una breve pulsación en el botón 2 (PLUS). Si después de sonar una alarma se quieren anular todas sus repeticiones sin cambiar la configuración del reloj, es necesario pulsar los dos botones a la vez (RESET).

Estados posibles del LED indicador de alarma horaria:

  • APAGADO: No existe ninguna alarma horaria en las próximas 24 horas
  • PARPADEANDO: Existe alguna alarma horaria dentro de las próximas 24 horas.
  • FIJO: Alarma ACTIVA, sonando o dentro del periodo de repetición.

Hora: Verano/Invierno

En algunos países existen dos tipos horarios:

  1. Horario estándar, el que corresponde con el huso horario (Horario de invierno).
  2. Horario de verano:

El cambio de hora se aplica una vez al año, haciendo que del horario estándar (o de invierno) se pase al horario de verano. Aunque la primera vez que se aplicó este cambio de hora fue durante la Primera Guerra Mundial, dejo de aplicarse hasta la crisis del petróleo de 1973. El objetivo es el de aprovechar mejor la luz solar, consumiendo menos electricidad.

Cambios horarios (Invierno/Verano)
Cambios horarios (Invierno/Verano)

HORARIO DE VERANO

Último domingo de MARZO:  A las 2:00 AM  se adelanta a las 3:00 AM

… se adelante 1 hora el reloj

HORARIO DE INVIERNO

Último domingo de OCTUBRE: A las 3:00 AM  se atrasa a las 2:00 AM

… se atrasa 1 hora el reloj

FIRMWARE

El firmware de este reloj se programa una vez montado el micro controlador (AT89S52) en su circuito impreso, a través de su interface de programación serie ICSP. Lo ideal sería utilizar un programador que tuviera dicho interface, pero si no lo tienes, puedes hacerlo con ARDUINO.

Programador ICSP con ARDUINO

El archivo que necesitas para programar este reloj (firmware), lo puedes descargar de forma gratuita desde el siguiente enlace:

J_RPM_v1_RELOJ_SERIE.HEX

FABRICAR LA CAJA CON UNA CNC

Archivos para cortar la madera tipo DM de 10 mm, en una CNC, y fabricar la caja de este reloj:

Caja_CNC_RELOJ_.zip

Piezas cortadas para montar la caja

CIRCUITOS IMPRESOS (PCB)

Archivos GERBER para fabricar el PCB de la CPU:

PCB_CPU_RELOJ.zip

PCB: CPU del Reloj SERIE

Archivos GERBER para fabricar el PCB de la CPU (v2):

PCB_CPU2.zip

PCB: CPU del Reloj SERIE (Modificada)

En esta versión se corrige el tamaño de los taladros, se incluye la posibilidad de utilizar dos tipos de conector en sus salidas y se añade una toma auxiliar de +5V

Archivos GERBER para fabricar el PCB del Display ( 1 dígito de 7 segmentos):

PCB_Display_RELOJ.zip

PCB: Display 7 segmentos serie

Si quieres ver los detalles de fabricación, configuración y puesta en marcha de este reloj, echa un vistazo al siguiente video:

 

Caja a medida con CNC

Diseño y fabricación de una caja a medida, cortando las piezas con la ayuda de una fresadora digital (CNC). El diseño de las piezas lo hice con el software SketchUp. Tuve que corregir el archivo que genera SketchUp para poder utilizarlo en la CNC. Para comprobar el código ‘G’ y corregir el archivo, utilicé el simulador por software CAMotics

Con el fin de controlar los display’s de 7 segmentos SMD que tengo, he mandado fabricar otro circuito impreso para montar la CPU.

PCB de la CPU

Esta CPU está basada en el micro-controlador AT89S52 de ATMEL. Como este micro-controlador se puede programar sin desmontarlo del circuito impreso, a través de su interface ICSP, he elegido el encapsulado de tipo SMD. El circuito impreso tiene una altura muy parecida a la del  display de 7 segmentos, y la idea es la de fabricar una caja de madera a medida, para construir un display con 4 dígitos.

SketchUP

Para cortar las piezas de madera con precisión, he utilizado una fresadora digital (CNC). Para dibujar las piezas a medida y poder exportar los datos a la CNC, he utilizado el software SketchUp.

Software SketchUp

A pesar de que este software funciona muy bien, he encontrado un problema a la hora de generar los archivos de código ‘G’. Los archivos contienen una serie de instrucciones adicionales que dañan las piezas a fabricar. Para localizar el lugar exacto donde se encuentran estas instrucciones para eliminarlos, he utilizado otro software que emula el funcionamiento de la CNC.

CAMotics 

El software CAMotics permite la ejecución del código ‘G’ de forma visual, y esto facilita la localización de las instrucciones que se deben eliminar.

Software CAMotics

El software permite la edición de los archivos y su posterior visualización, para comprobar que los cortes que hará la CNC sean los correctos.

Construcción de la caja

Después de la fase de diseño de la caja y conversión de sus datos en código ‘G’, el trabajo de corte y fresado de todas las piezas lo realiza la CNC. Si queremos obtener un buen acabado y precisión, es importante que los cortes se realicen en capas, no en una sola pasada.

Fresado de la caja

También es importante incluir unas pequeñas zonas en cada cara de las piezas, en las que la fresadora no realice el corte por completo. Estos pequeños puntos de sujeción evitarán que se muevan las piezas de su estructura durante el corte, evitando su desplazamiento y marcado por la fresa.

Montaje de la caja

Una vez cortadas todas las piezas que componen le caja, incluido su frontal de metacrilato, la pegamos con cola blanca (dejando la tapa lateral derecha sin pegar). La tapa lateral derecha irá sujeta con 2 tornillos, y es la que nos dará el  acceso al montaje y desmontaje de todos sus componentes en el interior. Para obtener un buen acabado, se sellan las juntas de todas las uniones que van pegadas, con cola blanca y serrín de la misma caja, suavizando todas las aristas con una lija especial para madera.

Ajuste de los PCB's en la caja

Para terminar se pinta la caja en color negro mate, con pintura en spray, y se comprueban los soportes colocando los circuitos impresos en su lugar y cerrando la caja.

 

Termostato de precisión #2

Construcción de un termostato digital, para controlar temperaturas con una precisión de 0,1ºC. Este termostato utiliza el sensor DS18B20, está controlado con el microprocesador AT89S52, y permite regular temperaturas entre -40 y +100ºC. También es posible controlar de forma simultánea los dos circuitos de un climatizador, el de frío y calor. Este termostato podría utilizarse como climatizador en un automóvil, controlar la temperatura de un edificio, la del agua de una piscina, incluso la de una incubadora. En esta segunda parte, se realizan los ajustes del termostato y se comprueba su funcionamiento.

CPU del termostato

La CPU del termostato la he montado en un circuito impreso de tipo universal. Para facilitar el montaje, todos los periféricos utilizan conectores. Se utilizan clemas de conexión para la entrada de alimentación (5 VDC), la conexión del sensor de temperatura DS18B20, los dos pulsadores y las dos salidas de control hacia los relés. Para el display LCD se utiliza un conector de 16 pines. El led de actividad utiliza la conexión de 2 pines macho y la otra conexión de 6 pines macho es para programar el micro controlador AT89S52 sin tener que extraerlo del circuito impreso, conexión ICSP.

CPU del Termostato

Firmware

Antes de conectar el circuito a la alimentación, es necesario programar el micro controlador AT89S52. El archivo hexadecimal (firmware) lo puedes descargar de forma gratuita desde el siguiente enlace:

Termostato de precisión (v1.00)

Si no dispones de un programador, podrías utilizar Arduino:

Programador ICSP con ARDUINO

Ajustes y calibración

El único ajuste de hardware que se necesita hacer es el del contraste del display, y se hace moviendo el ajuste del potenciómetro hasta conseguir un contraste óptimo. Luego se debería fijar la temperatura de trabajo del termostato, utilizando los dos pulsadores del frontal. El termostato permite fijar valores de temperatura entre -39,9 y +99,9ºC, con una precisión de 0,1ºC.  Al menú de configuración se accede pulsando el botón SET, y mediante el otro pulsador se pueden recorrer todos los valores posibles. Para cambiar de posición el cursor y guardar el valor anterior, se pulsa nuevamente el botón SET. A continuación se accede al menú de calibración del sensor de temperatura DS18B20.  Desde este menú es posible modificar la temperatura medida por el sensor con intervalos de 1ºC. Este ajuste permite seleccionar valores offset comprendidos entre -5 y +4ºC.   Para realizar esta calibración, sería conveniente utilizar un termómetro de precisión.

Calibrado del sensor DS18B20

Pruebas de funcionamiento

Para comprobar el correcto funcionamiento del termostato he simulado su conexión en una incubadora, fijando la temperatura de control  en 24,0ºC. El sistema de calefacción (para estas pruebas) consiste en una bombilla de filamento de 40W, conectada a 230 VAC a través del circuito 2 del termostato. El sistema de refrigeración es un pequeño ventilador de 12 VDC, controlado por el circuito 1 del termostato. Dependiendo de la distancia que exista entre los sistemas frío/calor y el termostato, es posible que se generen ciclos de histéresis: sobrepasando levemente la temperatura cuando esté conectada la bombilla, o disminuyendo cuando esté conectado el ventilador. Estos ciclos de conexión/desconexión tendrán un intervalo mínimo de 5 segundos, ya que este es el intervalo de medida y refresco del termostato.

Prueba del termostato

A continuación se prueba el sensor a temperaturas límites, con el fin de comprobar el correcto funcionamiento del circuito. El termostato guarda los valores de temperatura máxima-mínima, y también los puede mostrar en la línea superior del display LCD. Mediante la pulsación del botón verde, se alternan las dos presentaciones posibles en la línea superior del display, la presentación inferior no cambia. Los valores de máxima-mínima se reinician cada vez que se entra en el menú de configuración, o cuando baja la alimentación del pin 40 (VCC) del micro controlador por debajo de 2V. Para evitar la pérdida de los valores de configuración mientras está funcionando el termostato, es necesario mantener conectada la batería de 3,6 V NiMH que se incluye en el circuito. La conexión se realiza mediante un puente de conexión (jumper), o un pequeño interruptor deslizante con acceso desde el exterior.

Temperaturas máxima y mínima

En caso de no utilizar el termostato, es conveniente desconectar la batería del circuito.

Reloj FC-209 – RECOPILACIÓN

Recopilación de todos los videos relacionados con el reloj LED (FC-209), explicando por encima lo que se puede encontrar en cada uno de ellos. Además se presenta la última actualización del firmware, tanto para el kit FC-209 como para el reloj de pared. También se crean ambas versiones de firmware con los textos en inglés.

RECOPILACIÓN

Construye un Reloj LED – EC1204B

Se describe el montaje del kit de reloj en una carcasa de plástico semitransparente, en la cual se alberga una batería de litio (recuperada de un PC), con el fin de alimentar el reloj de forma autónoma. Se empieza describiendo con el esquema y de forma básica el funcionamiento del reloj. Posteriormente se explica el funcionamiento del módulo ‘Step Up’, utilizado para elevar la tensión de la batería de litio y conseguir los 5V estabilizados que  alimentan el reloj. También se instala un módulo de carga TP4056 con protección, el cual se explicó con detalles entre el video Power Bank #1 y Linterna LED #2 – MEJORAS. Se mide el consumo del reloj, y se calcula la autonomía máxima de la batería, a partir de su capacidad. Finalmente se muestra la construcción de la serigrafía frontal, realizada con una CNC y se describe el funcionamiento y ajustes de este kit de reloj, utilizando el firmware con el que viene programado el reloj de fábrica.

Firmware para el Reloj LED: EC1204B

Se realiza un nuevo firmware para sustituirlo por el que viene instalado de fábrica, es la versión 1. Después de realizar un estudio de todo el hardware, se decide elevar la frecuencia del reloj de cuarzo, y sustituir el sensor de temperatura original DS18B20, por otro de mayor precisión. Al realizar estos cambios, la versión 1 del firmware no es compatible con el kit original, porque sería necesario sustituir estos dos componentes. Posteriormente se detalla a fondo el funcionamiento del chip DS1302, RTC o reloj en tiempo real, y se explica el proceso a seguir para reprogramar el micro-controlador utilizando el puerto ICSP (In-Circuit Serial Programming) que incorpora dicho kit. Finalmente se detallan todas las funciones y mejoras incorporadas en el nuevo firmware, explicando el modo de configuración y su funcionamiento.

Firmware Reloj LED #2 (Temperatura, Hora de Verano)

Se actualiza el firmware anterior, incorporando la posibilidad de que el reloj realice el cambio automático de la hora inverno/verano. Esta es la versión 2, y tampoco es compatible con el kit original. Se analiza a fondo el funcionamiento y comunicaciones entre el sensor de temperatura y el micro-controlador, comparando las diferencias que existen entre el sensor original DS18B20 y el instalado. Finalmente se calibra el sensor de temperatura mediante el menú de configuración y se detalla el proceso que sigue el reloj cuando tiene que actualizar la hora, estando apagado y encendido, comprobando también su funcionamiento.

Firmware Reloj LED #3 (Brillo nocturno)

Se actualiza de nuevo el firmware, incorporando la posibilidad de programar las horas en las que el display reduce su brillo. Con esto se evitan las molestias por exceso de iluminación, cuando se utiliza como despertador en una habitación oscura. Esta es la versión 3, y tampoco es compatible con el kit original. Se realizan de nuevo medidas de consumo del reloj, pero ahora con bajo brillo, y se calcula el incremento de la autonomía de su batería, debido a la reducción del consumo.

Firmware Reloj #4 (Compatible FC-209)

Debido a las numerosas peticiones que recibo, realizo un nuevo firmware totalmente compatible con el kit de reloj FC-209. Esta es la versión 4, y es la primera que se puede utilizar con el kit original. A pesar de que el sensor de temperatura original es menos preciso, con el DS18B20 se amplía el rango de medidas, pudiendo mostrar temperaturas entre -10 y 125ºC. Como existe la posibilidad de sustituir el chip de temperatura por otro externo con encapsulado metálico, es posible utilizar un sensor externo para medir la temperatura de componentes electrónicos o fluidos.

Cronómetro LED #5 (FC-209)

Se incorpora la posibilidad de utilizar el kit FC-209 como reloj o cronómetro. La opción de cronómetro se debe habilitar pulsando el botón central MODE, en la fase de arranque. En caso de no tocar nada, el módulo arrancará en modo reloj y tendrá las mismas funciones que tenía en la versión anterior, versión 4. Esta es la versión 5, y también es compatible con el kit FC-209. Una vez que se entra en el modo cronómetro, es posible configurar el modo del contador, pudiendo contar el tiempo hacia delante o hacia atrás. La resolución del cronómetro es de centésimas de segundos, mostrando este valor al final, en modo alterno cuando se detiene la cuenta.

Reloj LED de pared #1

Se muestra un nuevo diseño de reloj, utilizando las mismas características del kit FC-209, pero ampliando su tamaño para que pueda utilizarse como reloj de pared. Este firmware NO es compatible con el kit de reloj FC-209. Esta es la versión 6, exclusiva para este modelo de reloj, pero funciona exactamente igual que la versión 5 en el kit FC-209.

Al ampliar de tamaño el display, es mejor construir todo el frontal con diodos LED, en lugar de utilizar display’s de 7 segmentos. Con este aumento de tamaño se acentúa el efecto de parpadeo, provocado por la baja velocidad del procesador, por lo que se aumenta la frecuencia del cristal de cuarzo, igual que se hizo en  las 3 primeras versiones del firmware, pero en este caso se mantiene el mismo modelo de sensor de temperatura. Otra modificación, es el uso de una batería recargable en lugar de la pila de botón. En este firmware se habilita el control de carga de la batería tampón, a través del chip DS1302. Para poder alimentar más de dos diodos en serie, como es el caso, se necesita subir la tensión de alimentación por encima de 5V, por lo que también se necesita instalar un módulo Step-UP.

En el video se muestran los detalles de construcción del circuito impreso que se necesita, así como el ensamblado de los diodos led en el frontal y sus cableados. Finalmente se realizan las pruebas de funcionamiento.

Reloj LED de pared #2

Se construye la carcasa frontal del reloj de pared, y se monta un anclaje para poder colgarlo. También se muestra el grabado de la serigrafía y mecanizado del frontal, realizado todo con una CNC. Luego se pinta la serigrafía, y se muestra el reloj ya colgado y funcionando.

Termómetro digital para fluidos

Se utiliza un nuevo kit de reloj, para poder utilizarlo principalmente como medidor de temperatura de componentes electrónicos y fluidos. Se sustituye el chip de temperatura original, por otro externo del mismo modelo, pero encapsulado en acero inoxidable. También se realiza el mecanizado con la CNC, pero como en este caso se utilizará el kit con un  alimentador externo de 5V, su tamaño es bastante reducido y fácil de transportar. Finalmente se realiza el calibrado del sensor de temperatura, utilizando como referencia los 0ºC que tiene el hielo en fusión.

Firmware for LED Clock – ENGLISH

Debido a las múltiples peticiones que recibí de algunos seguidores no hispanos, hice una versión del último firmware del kit FC-209, pero traduciendo todos sus textos en inglés.

Última actualización del firmware del reloj LED

Se incorporan un par de sugerencias que he recibido en los últimos meses. La primera de ellas y la más solicitada, es la posibilidad de presentar la temperatura en modo alterno con la hora, y la otra es la opción de poder mostrar los CEROS de las decenas de hora en el display, es decir, que se encienda el cero de la izquierda de las horas entre las 0 y las 9 de la mañana. Ambas opciones serán configurables, de manera que se podrá elegir entre la presentación anterior o la nueva.

Existe una variante entre el firmware del kit de reloj FC-209 y el reloj de pared, aunque sus prestaciones son las mismas. De manera que hay dos modelos de firmware, uno para cada modelo.

·        Kit FC-209: J_RPM_v5B_EC1204B.HEX

·        Reloj de pared: J_RPM_v6B_EC1204B.HEX

Configuración del Reloj LED (v5B-v6B)
Configuración del Reloj LED (v5B-v6B)

 

También he creado dos versiones con los textos en inglés:

·        Kit FC-209:  J_RPM_v5eB_EC1204B.HEX

·        Reloj de pared: J_RPM_v6eB_EC1204B.HEX

Flow diagram (v5B-v6B)
Flow diagram (v5B-v6B)

Detalles de la presentación alterna

Cuando se active el modo de presentación alterno, la temperatura se mostrará de forma síncrona con el reloj, y lo hará cada 5 segundos. Entre el segundo 5 y el 55 de cada minuto, nunca se mostrará en el segundo ‘0’ de cada minuto, y lo hago así con el fin de mostrar siempre el cambio del minuto al paso por el segundo ‘0’ y no interrumpir la escucha de las señales horarias en caso de que estuvieran activadas. La temperatura sólo aparecerá durante un segundo de cada 5, en total 11 veces en cada minuto.

Por otra parte, como la lectura de la temperatura requiere de un tiempo y no es conveniente utilizar interrupciones cuando se está realizando la lectura, la presentación del display se detiene durante ese período de tiempo, siempre inferior a 1 segundo, pero provoca que la aparición de la temperatura en el display sea inferior a 1 segundo. Dependiendo de la velocidad del sensor de temperatura ese efecto podría pasar desapercibido, cosa que no sucede con el chip original que se incluye en el kit, ya que es demasiado lento. Me refiero al sensor de temperatura DS18B20 que se incluye en el kit de reloj.

Por ese motivo, con el fin de mejorar la visibilidad de la temperatura, la lectura sólo se realizará cada 10 segundos, de manera que entre dos presentaciones sucesivas, una de ellas siempre será instantánea y aparecerá durante 1 segundo completo. Dependiendo del segundo en el que se arranque el reloj, la lectura podría coincidir en los segundos acabados en ‘0’ o en ‘5’, ya que la primera vez que pase por alguno de ellos tendrá que leer el valor, pero al paso por el segundo ‘0’ se sincronizará y siempre leerá en los segundos acabados en ‘5’. Los segundos acabados en ‘0’ mostrarán la temperatura leída anteriormente, excepto en el segundo ‘0’ de cada minuto como ya he mencionado antes. Por otra parte, en el caso de que la temperatura sobrepase alguno de los dos umbrales de alarma, el aviso acústico se realizará sólo cuando el valor acaba de ser leído. Es decir, la alarma de temperatura sólo sonará en los segundos acabados en ‘5’

Stick LED programable #2

Personalización de los textos y gráficos que aparecen en el Stick LED, modificando el firmware con un editor hexadecimal. Instalación del software de control Stick.exe y programación del texto que se almacena en la memoria RAM del Stick LED.

Puedes descargar este software de forma gratuita desde el siguiente enlace: Install_Stick_v1.04.rar

Este programa funciona bajo Windows.  Para instalar hay que descomprimir el archivo .rar  y ejecutar el archivo .exe siguiendo las indicaciones del instalador.

Para modificar  los textos fijos de la memoria ROM, es necesario editar el fichero del firmware antes de programar el micro controlador AT89S52. Podemos utilizar cualquier editor hexadecimal, o hacerlo desde el propio interface de programación. En total se pueden modificar 19 mensajes, los 4 primeros dobles (8 mensajes) y los 11 siguientes simples.  La matriz completa de cada mensaje está compuesta por 48 columnas y 16 filas (número de diodos LED del Stick). La imagen completa tiene una resolución de 16×48 = 768 pixel. Para poder escribir los textos de forma sencilla,  el firmware utiliza un Font de caracteres de 16×6, y así los textos se introducen en ASCII, pudiendo editarse directamente desde el teclado del PC.

Editar ROM
Editar ROM

Como puede apreciarse en la imagen anterior, todos los caracteres deben escribirse en la ROM con letras mayúsculas. Los caracteres de la tabla que se muestran con el fondo de color verde, están asociados a los gráficos que se almacenan en la ROM. En total hay 6 gráficos almacenados, y cada uno de ellos ocupa 4 códigos de la tabla. La correspondencia de los códigos de algunos caracteres en minúscula de la tabla ASCII, son traducidos en gráficos cuando se muestran en el Stick LED.

Interface RS-232
Interface RS-232

Para poder modificar el mensaje doble que se almacena en la memoria RAM, es necesario intercalar un interface entre el Stick y el PC o dispositivo móvil. En este caso he utilizado un interface convencional RS-232 (ver imagen anterior). También podría utilizarse un interface TTL-USB, TTL-Bluetooth, etc.

Software: Stick.exe
Software: Stick.exe

En la imagen anterior se muestra la pantalla del software de programación Stick.exe. Una vez conectado el puerto serie del PC con el Stick siempre encendido y mediante el interface, sólo sería necesario editar los dos textos y enviarlos. El software mostrará un acuse de recibo al final del envío, o mostrará un mensaje de error en caso de que no se reciba la confirmación desde el Stick.