ESP32: Reloj / Cronómetro

Construcción de un Reloj/Cronómeto de precisión, controlado con un módulo ESP32. Este cronómetro dispone de un pulsador, permitiendo su manejo en modo local y también a distancia. Para el control remoto se puede utilizar cualquier teléfono móvil o PC, que esté conectado a la misma red local que el módulo ESP32.

Hasta ahora, todos los relojes que he construido con el ESP32 necesitaban un acceso a Internet vía Wi-Fi para funcionar. En este caso, cuando el reloj funcione en modo cronómetro no será imprescindible disponer del acceso Wi-Fi. A través de su pulsador se pueden controlar todas las funciones del cronómetro,  y lo único que se perdería sin el acceso a Wi-Fi es el control remoto.

Reloj Pac-Man con ESP32 & UTF-8

Crono_ESP32.ino

Al principio del fichero Crono_ESP32.ino están los comentarios, indicando algunos link de compra de los módulos y descarga de librerías

hw_timer_t >>> Es la variable del ‘timer’ que se utiliza para crear las interrupciones de 100 mSeg del cronómetro

has_expired >>> Es la variable booleana que gestionará el ‘void loop’ para incrementar con precisión los 100mSeg. del cronómetro cuando esté en marcha.

Mode_CRONO >>> Es la variable booleana necesaria para gestionar si está funcionando como reloj o cronómetro.

pinPulsa >>> Define el pin GPIO donde está conectado el pulsador del cronómetro.

WifiManager.h >>> Es la librería necesaria para configurar le red WiFi a la que irá conectado el módulo ESP32.

Void IRAM_ATTR >>> Es la rutina de la interrupción, que se ejecutará siguiendo con precisión un intervalo de tiempo. Cada 100mSeg. se pondrá en alto la variable booleana: has_expired

void setup()

Se inicializa el puerto serie y se carga la configuración del reloj, almacenada en la memoria EEPROM del módulo ESP32.

Se configura el LED azul del módulo ESP32 como salida, para indicar de forma visual los incrementos y estado del cronómetro. También se configura el pin al que va conectado el pulsador como entrada en modo Pull-Up.

timer = timerBegin(0, 80, true) >>> Como el cristal de cuarzo del ESP32 es de 80 MHz, dividimos entre 80 para tener como referencia 1MHz, para que el Timer 0 se desborde cada microsegundo.

timerAttachInterrupt(timer, &timerInterrupcion, true) >>> Aquí activamos la interrupción del timer, y hacemos la llamada a la rutina: void IRAM_ATTR timerInterrupcion() 

timerAlarmWrite(timer, 100000, true) >>> Aquí activamos el disparo del timer cada 100.000 uSeg. = cada décima de segundo se producirá la ejecución de la rutina: void IRAM_ATTR timerInterrupcion() 

timerAlarmEnable(timer) >>> Se habilita la alarma del timer.

Librerías personalizadas

En la misma carpeta del proyecto se incluyen dos librerías, personalizadas para este Reloj/Cronómetro:

fonts_es.h >>> Contiene las dos fuentes de caracteres que utiliza el reloj, incluyendo los caracteres especiales que se utilizan en español, como son las letras acentuadas, Ç y Ñ; tanto en minúsculas como en mayúsculas .

max7219.h >>> Contiene las rutinas necesarias para mostrar y animar los caracteres en las 4 matrices LED, gestionadas en serie con sus respectivos circuitos integrados MAX7219.  Es importante indicar en esta librería la posición en las que van montadas las matrices LED sobre el circuito impreso… en este caso van rotadas 90º.

https://github.com/J-RPM/ESP32_Crono/

ESQUEMA

En el esquema se muestran con las conexiones que tenemos que hacer entre el módulo ESP32 y el PCB que contiene las 4 matrices LED. Son las mismas conexiones que tenía el anterior firmware del reloj, lo único nuevo son los dos hilos de conexión del pulsador con el módulo ESP32.

Caja 3D

Para hacer la carcasa del Reloj/Cronómetro utilicé el mismo diseño 3D que hice para el reloj, sin diseñar el tamaño y posición del agujero del pulsador. Así es posible mecanizar la caja a gusto de cada uno, para utilizar cualquier modelo de pulsador, eligiendo su posición… o mecanizar un paso de cable en la caja para colocar un pulsador en el exterior.

Caja 3D, para el PCB de 8 dígitos LED de 7 segmentos

https://www.thingiverse.com/thing:4655690

¿Necesitas fabricar un circuito impreso?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

 https://www.pcbway.es/

Logo: PCBWay

Reloj FC-209 – RECOPILACIÓN

Recopilación de todos los videos relacionados con el reloj LED (FC-209), explicando por encima lo que se puede encontrar en cada uno de ellos. Además se presenta la última actualización del firmware, tanto para el kit FC-209 como para el reloj de pared. También se crean ambas versiones de firmware con los textos en inglés.

RECOPILACIÓN

Construye un Reloj LED – EC1204B

Se describe el montaje del kit de reloj en una carcasa de plástico semitransparente, en la cual se alberga una batería de litio (recuperada de un PC), con el fin de alimentar el reloj de forma autónoma. Se empieza describiendo con el esquema y de forma básica el funcionamiento del reloj. Posteriormente se explica el funcionamiento del módulo ‘Step Up’, utilizado para elevar la tensión de la batería de litio y conseguir los 5V estabilizados que  alimentan el reloj. También se instala un módulo de carga TP4056 con protección, el cual se explicó con detalles entre el video Power Bank #1 y Linterna LED #2 – MEJORAS. Se mide el consumo del reloj, y se calcula la autonomía máxima de la batería, a partir de su capacidad. Finalmente se muestra la construcción de la serigrafía frontal, realizada con una CNC y se describe el funcionamiento y ajustes de este kit de reloj, utilizando el firmware con el que viene programado el reloj de fábrica.

Firmware para el Reloj LED: EC1204B

Se realiza un nuevo firmware para sustituirlo por el que viene instalado de fábrica, es la versión 1. Después de realizar un estudio de todo el hardware, se decide elevar la frecuencia del reloj de cuarzo, y sustituir el sensor de temperatura original DS18B20, por otro de mayor precisión. Al realizar estos cambios, la versión 1 del firmware no es compatible con el kit original, porque sería necesario sustituir estos dos componentes. Posteriormente se detalla a fondo el funcionamiento del chip DS1302, RTC o reloj en tiempo real, y se explica el proceso a seguir para reprogramar el micro-controlador utilizando el puerto ICSP (In-Circuit Serial Programming) que incorpora dicho kit. Finalmente se detallan todas las funciones y mejoras incorporadas en el nuevo firmware, explicando el modo de configuración y su funcionamiento.

Firmware Reloj LED #2 (Temperatura, Hora de Verano)

Se actualiza el firmware anterior, incorporando la posibilidad de que el reloj realice el cambio automático de la hora inverno/verano. Esta es la versión 2, y tampoco es compatible con el kit original. Se analiza a fondo el funcionamiento y comunicaciones entre el sensor de temperatura y el micro-controlador, comparando las diferencias que existen entre el sensor original DS18B20 y el instalado. Finalmente se calibra el sensor de temperatura mediante el menú de configuración y se detalla el proceso que sigue el reloj cuando tiene que actualizar la hora, estando apagado y encendido, comprobando también su funcionamiento.

Firmware Reloj LED #3 (Brillo nocturno)

Se actualiza de nuevo el firmware, incorporando la posibilidad de programar las horas en las que el display reduce su brillo. Con esto se evitan las molestias por exceso de iluminación, cuando se utiliza como despertador en una habitación oscura. Esta es la versión 3, y tampoco es compatible con el kit original. Se realizan de nuevo medidas de consumo del reloj, pero ahora con bajo brillo, y se calcula el incremento de la autonomía de su batería, debido a la reducción del consumo.

Firmware Reloj #4 (Compatible FC-209)

Debido a las numerosas peticiones que recibo, realizo un nuevo firmware totalmente compatible con el kit de reloj FC-209. Esta es la versión 4, y es la primera que se puede utilizar con el kit original. A pesar de que el sensor de temperatura original es menos preciso, con el DS18B20 se amplía el rango de medidas, pudiendo mostrar temperaturas entre -10 y 125ºC. Como existe la posibilidad de sustituir el chip de temperatura por otro externo con encapsulado metálico, es posible utilizar un sensor externo para medir la temperatura de componentes electrónicos o fluidos.

Cronómetro LED #5 (FC-209)

Se incorpora la posibilidad de utilizar el kit FC-209 como reloj o cronómetro. La opción de cronómetro se debe habilitar pulsando el botón central MODE, en la fase de arranque. En caso de no tocar nada, el módulo arrancará en modo reloj y tendrá las mismas funciones que tenía en la versión anterior, versión 4. Esta es la versión 5, y también es compatible con el kit FC-209. Una vez que se entra en el modo cronómetro, es posible configurar el modo del contador, pudiendo contar el tiempo hacia delante o hacia atrás. La resolución del cronómetro es de centésimas de segundos, mostrando este valor al final, en modo alterno cuando se detiene la cuenta.

Reloj LED de pared #1

Se muestra un nuevo diseño de reloj, utilizando las mismas características del kit FC-209, pero ampliando su tamaño para que pueda utilizarse como reloj de pared. Este firmware NO es compatible con el kit de reloj FC-209. Esta es la versión 6, exclusiva para este modelo de reloj, pero funciona exactamente igual que la versión 5 en el kit FC-209.

Al ampliar de tamaño el display, es mejor construir todo el frontal con diodos LED, en lugar de utilizar display’s de 7 segmentos. Con este aumento de tamaño se acentúa el efecto de parpadeo, provocado por la baja velocidad del procesador, por lo que se aumenta la frecuencia del cristal de cuarzo, igual que se hizo en  las 3 primeras versiones del firmware, pero en este caso se mantiene el mismo modelo de sensor de temperatura. Otra modificación, es el uso de una batería recargable en lugar de la pila de botón. En este firmware se habilita el control de carga de la batería tampón, a través del chip DS1302. Para poder alimentar más de dos diodos en serie, como es el caso, se necesita subir la tensión de alimentación por encima de 5V, por lo que también se necesita instalar un módulo Step-UP.

En el video se muestran los detalles de construcción del circuito impreso que se necesita, así como el ensamblado de los diodos led en el frontal y sus cableados. Finalmente se realizan las pruebas de funcionamiento.

Reloj LED de pared #2

Se construye la carcasa frontal del reloj de pared, y se monta un anclaje para poder colgarlo. También se muestra el grabado de la serigrafía y mecanizado del frontal, realizado todo con una CNC. Luego se pinta la serigrafía, y se muestra el reloj ya colgado y funcionando.

Termómetro digital para fluidos

Se utiliza un nuevo kit de reloj, para poder utilizarlo principalmente como medidor de temperatura de componentes electrónicos y fluidos. Se sustituye el chip de temperatura original, por otro externo del mismo modelo, pero encapsulado en acero inoxidable. También se realiza el mecanizado con la CNC, pero como en este caso se utilizará el kit con un  alimentador externo de 5V, su tamaño es bastante reducido y fácil de transportar. Finalmente se realiza el calibrado del sensor de temperatura, utilizando como referencia los 0ºC que tiene el hielo en fusión.

Firmware for LED Clock – ENGLISH

Debido a las múltiples peticiones que recibí de algunos seguidores no hispanos, hice una versión del último firmware del kit FC-209, pero traduciendo todos sus textos en inglés.

Última actualización del firmware del reloj LED

Se incorporan un par de sugerencias que he recibido en los últimos meses. La primera de ellas y la más solicitada, es la posibilidad de presentar la temperatura en modo alterno con la hora, y la otra es la opción de poder mostrar los CEROS de las decenas de hora en el display, es decir, que se encienda el cero de la izquierda de las horas entre las 0 y las 9 de la mañana. Ambas opciones serán configurables, de manera que se podrá elegir entre la presentación anterior o la nueva.

Existe una variante entre el firmware del kit de reloj FC-209 y el reloj de pared, aunque sus prestaciones son las mismas. De manera que hay dos modelos de firmware, uno para cada modelo.

·        Kit FC-209: J_RPM_v5B_EC1204B.HEX

·        Reloj de pared: J_RPM_v6B_EC1204B.HEX

Configuración del Reloj LED (v5B-v6B)
Configuración del Reloj LED (v5B-v6B)

 

También he creado dos versiones con los textos en inglés:

·        Kit FC-209:  J_RPM_v5eB_EC1204B.HEX

·        Reloj de pared: J_RPM_v6eB_EC1204B.HEX

Flow diagram (v5B-v6B)
Flow diagram (v5B-v6B)

Detalles de la presentación alterna

Cuando se active el modo de presentación alterno, la temperatura se mostrará de forma síncrona con el reloj, y lo hará cada 5 segundos. Entre el segundo 5 y el 55 de cada minuto, nunca se mostrará en el segundo ‘0’ de cada minuto, y lo hago así con el fin de mostrar siempre el cambio del minuto al paso por el segundo ‘0’ y no interrumpir la escucha de las señales horarias en caso de que estuvieran activadas. La temperatura sólo aparecerá durante un segundo de cada 5, en total 11 veces en cada minuto.

Por otra parte, como la lectura de la temperatura requiere de un tiempo y no es conveniente utilizar interrupciones cuando se está realizando la lectura, la presentación del display se detiene durante ese período de tiempo, siempre inferior a 1 segundo, pero provoca que la aparición de la temperatura en el display sea inferior a 1 segundo. Dependiendo de la velocidad del sensor de temperatura ese efecto podría pasar desapercibido, cosa que no sucede con el chip original que se incluye en el kit, ya que es demasiado lento. Me refiero al sensor de temperatura DS18B20 que se incluye en el kit de reloj.

Por ese motivo, con el fin de mejorar la visibilidad de la temperatura, la lectura sólo se realizará cada 10 segundos, de manera que entre dos presentaciones sucesivas, una de ellas siempre será instantánea y aparecerá durante 1 segundo completo. Dependiendo del segundo en el que se arranque el reloj, la lectura podría coincidir en los segundos acabados en ‘0’ o en ‘5’, ya que la primera vez que pase por alguno de ellos tendrá que leer el valor, pero al paso por el segundo ‘0’ se sincronizará y siempre leerá en los segundos acabados en ‘5’. Los segundos acabados en ‘0’ mostrarán la temperatura leída anteriormente, excepto en el segundo ‘0’ de cada minuto como ya he mencionado antes. Por otra parte, en el caso de que la temperatura sobrepase alguno de los dos umbrales de alarma, el aviso acústico se realizará sólo cuando el valor acaba de ser leído. Es decir, la alarma de temperatura sólo sonará en los segundos acabados en ‘5’

Reloj LED de pared

Kit Reloj LED (FC-209)
Kit Reloj LED (FC-209)

Partiendo del desarrollo del kit de reloj de esfera rotante FC-209, fabricaremos un reloj de mayor tamaño para poder colgarlo en la pared. Los pulsadores irán situados en el frontal de la esfera, y así podremos utilizarlo en modo cronómetro… muy útil para temporizar los ejercicios en un gimnasio, utilizarlo como temporizador en la cocina, etc. Este reloj dispondrá de las mismas funciones que tenía la última revisión del firmware (v5), pero en esta versión (v6) vamos a utilizar un cristal de cuarzo de frecuencia más alta (con el fin de mejorar la velocidad de refresco) y también sustituiremos la pila de botón por una pequeña batería recargable.

Registro de carga del DS1302
Registro de carga del DS1302

La recarga de esta batería será permanente, siempre que esté alimentado el reloj, y la controlará el propio chip de reloj DS1302.

La versión 6 del firmware, se puede descargar de forma gratuita desde el siguiente enlace: J_RPM_v6_EC1204B.HEX

En este reloj, el display de 4 dígitos BCD lo construimos con diodos LED. Montaremos 2 diodos por cada segmento (se podrían montar más), de los 7 que se compone un dígito BCD. Al conectar 2 diodos en serie de alto brillo, necesitaremos una tensión de alimentación superior a los 5V que disponemos para alimentar el reloj. Con el fin de poder adaptar este circuito con cualquier configuración que utilicemos para construir los dígitos (número de diodos en serie por segmento), utilizaremos el módulo elevador de tensión MT3608.

Esquema MT3608
Esquema MT3608

La tensión de salida de este módulo la utilizaremos para alimentar los 4 dígitos del reloj. Mediante el potenciómetro de ajuste de tensión, podremos adaptar la tensión de alimentación  y modificar el brillo de los 4 dígitos centrales.

Esquema del Reloj (v6)
Esquema del Reloj (v6)

En este esquema se muestran los componentes que irán instalados en la placa de circuito impreso. Tanto los diodos LED como sus resistencias limitadoras, irán instalados en una placa de plástico.

Ensamblado de los diodos LED
Ensamblado de los diodos LED

Con el fin de facilitar la realización del circuito impreso, no he utilizado un programa de diseño PCB, simplemente lo he dibujado utilizando el software ‘Paint’ que incorpora Windows en todos sus sistemas operativos. El circuito impreso de la imagen siguiente, está a escala DIN-A4. Puede imprimirse directamente en papel, o utilizar una lámina transparente (especial para impresoras láser) para conseguir un fotolito a escala.

Fotolito del Reloj LED
Fotolito del Reloj LED

Siguiendo el esquema de conexionado que se muestra en la imagen siguiente, podremos terminar el montaje. Como la tensión de alimentación de este reloj es de 5V, podremos utilizar cualquier cargador que tengamos para alimentar dispositivos móviles. El alimentador de 5V podría instalarse en el interior… o fuera con el fin de poder utilizar este reloj con baterías (Power Bank).

Montaje: Reloj 15x15
Montaje: Reloj 15×15

El modo de funcionamiento y ajustes de este reloj (v6), es idéntico al que se mostró en la última versión del firmware (v5):

Configuración del Reloj LED (v5)
Configuración del Reloj LED (v5)

En la primera parte del video se muestra el diseño del reloj, la construcción del PCB y el montaje de todos los componentes:

En la segunda parte del video se muestra el proceso de fabricación de la carcasa, ensamblado y grabados con la CNC (fresadora de control numérico) de la carátula frontal:

 

Firmware Reloj LED #3 (Brillo nocturno)

En la versión 3 del firmware del Reloj LED, se incluye la posibilidad de reducir el brillo del display de forma automática. Este cambio se realiza dentro de un horario programable, no mediante un sensor de luz. La hora de inicio y fin de esta reducción de brillo, está asociada a las horas de inicio y fin de la activación acústica de las señales horarias. Con esta reducción de brillo se evita la molestia que podría ocasionar un exceso de luz, cuando se utiliza el reloj como despertador en una habitación oscura, y además se mejora la autonomía de la batería (se reduce el consumo).

La versión 3 del firmware, se puede descargar de forma gratuita desde el siguiente enlace:

J_RPM_v3_EC1204B.HEX

Configuración del Reloj LED (v3)
Configuración del Reloj LED (v3)

Este es el nuevo diagrama para la programación del Reloj LED, utilizando la versión 3 del firmware.

Firmware Reloj LED #2 (Temperatura, Hora de Verano)

Detalles de funcionamiento del chip de temperatura (DS18B20) del Reloj Led EC1204B. Sustitución del sensor de temperatura DS18B20 por el DS18S20, de mayor precisión, mostrando las diferencias entre ambos sensores. Comprobación de las alarmas de temperatura con el reloj y la presentación límite con temperaturas positivas y negativas.

Los cambios de hora invierno/verano que se realizan en algunos países desde el año 1973. Actualización del firmware del reloj, para permitir el cambio de hora invierno/verano de forma automática. Forma de implementar el ajuste automático de la hora empleando tablas. Almacenaje de datos para que funcione el cambio horario con el reloj apagado, y comprobación de su funcionamiento.

La versión 2 del firmware, se puede descargar de forma gratuita desde el siguiente enlace:

J_RPM_v2_EC1204B.HEX

La versión 3 del firmware incluye la posibilidad de reducir el brillo del display en horario nocturno. Puedes descargarla desde el siguiente enlace:

J_RPM_v3_EC1204B.HEX

Sensor de temperatura DS18B20

El chip DS18B20 es su sensor temperatura digital de resolución configurable entre 9 y 12 bits. Por defecto, de fábrica está configurado con 12 bits. A máxima resolución, sus últimos 4 bits se corresponden con las lecturas decimales de: 0,5°/ 0,25° / 0,125° / 0,0625°.

Sensor de temperatura: DS1820
Sensor de temperatura: DS1820

Para tomar la temperatura se debe transmitir el comando Convertir [44H]. Este comando realiza una conversión de la temperatura a formato digital, y posteriormente la almacena en la memoria del chip con un formato de 16 bits. Los 5 bits MSB se corresponden al signo, siendo todos ‘0’ cuando la temperatura es positiva y ‘1’ cuando es negativa.

La información puede ser recuperada mediante su interfaz de 1 hilo, enviando el comando Lectura [BEH]. Los datos se transfieren a través del bus, empezando por el bit menos significativo (LSB).

DETECCIÓN DE ALARMAS

Después de realizar la conversión de la temperatura, el valor se compara con los valores de referencia, previamente almacenados en las memorias TH y TL del chip. Como estos registros son de 8 bits, los bits 9-12 se ignoran en la comparación. El bit más significativo de TH / TL se corresponde con el bit de signo. Si el resultado de una medición de temperatura es mayor que TH o inferior TL, se almacena un indicador de alarma en el interior del chip. El estado de alarma se actualiza con cada medición de temperatura. Esto permitiría conectar varios DS1820 en paralelo,  y realizar una lectura rápida para detectar si algún sensor tiene alarma, y posteriormente leer su temperatura de forma inmediata.

En la figura siguiente podemos ver la diferencia que existe en el formato de datos de temperatura, entre los sensores DS18B20 y DS18S20.

Estructura de datos DS1820
Estructura de datos DS1820

A pesar de que sus encapsulados, interface de comunicaciones y comandos son idénticos… la estructura de sus datos los hace incompatibles entre si, y es necesario modificar el firmware del reloj para que pueda mostrar la temperatura.

Memoria DS1820
Memoria DS1820

MEMORIA ROM

El sensor de temperatura DS1820 tiene una memoria ROM, que contiene un código único de 64 bits. Los primeros 8 bits identifican a la familia (DS18B20 = 28H / DS18C20 = 10H). Los siguientes 48 bits almacenan un número de serie único. Los últimos 8 bits son el CRC de los primeros 56 bits. Estos 64 bits permiten la gestión de varios dispositivos conectados en el mismo bus, pudiendo realizar las siguientes operaciones:

(33H) Leer la memoria ROM

(55H) Comunicar con un solo dispositivo

(F0H) Buscar una dirección ROM

(CCH) Saltar la dirección ROM, para acceder a los datos (sensor único)

(ECH) Búsqueda de alarmas

Leer ROM [33H]

Este comando permite que el maestro del Bus pueda leer el código de la familia de 8 bits del DS1820, su número de serie de 48 bits, y los 8 bits del CRC. Este comando sólo se puede utilizar si hay un solo DS1820 en el Bus. Si existe más de un dispositivo en el Bus, se producirá una colisión de datos cuando todos los esclavos intenten transmitir en el mismo tiempo.

Comunicación con un dispositivo ROM [55H]

El comando 55H, seguido de una secuencia ROM de 64 bits, permite que el maestro del bus pueda comunicar con un solo dispositivo DS1820 dentro del mismo Bus. Sólo responderá el DS1820 que coincida exactamente con la secuencia ROM de 64 bits recibida. Todos los esclavos que no coincidan con la memoria ROM de 64 bits, esperarán la recepción de un impulso de reposición. Este comando se puede utilizar con uno o varios dispositivos conectados en el mismo Bus.

Buscar ROM [F0H]

Mediante el comando F0H, el maestro puede conocer el número de dispositivos (esclavos) que tiene conectados en el mismo Bus, o sus códigos ROM de 64 bits.

Saltar ROM [CCH]

Este comando permite ahorrar tiempo al maestro del Bus, para acceder a la funciones de la memoria sin proporcionar el código ROM de 64 bits. Este comando no se debe utilizar cuando existe más de un dispositivo conectado en el mismo Bus.

Búsqueda de alarmas [ECH]

Mediante el comando ECH, el maestro puede acceder a las alarmas de todos los dispositivos (esclavos) que tiene conectados en el Bus. La condición de alarma se define como una temperatura mayor que TH o inferior TL. La condición de alarma permanecerá activada hasta que otra medida de temperatura deje de superar los umbrales de alarma (TH/TL).

MEMORIA RAM

Escribir RAM [4EH]

El comando 4EH habilita la escritura en la memoria RAM del DS18B20, empezando por el registro TH. Estos 3 Bytes (2 Bytes con DS18S20) se almacenan en las posiciones 2, 3 y 4 de la memoria. Los 3 Bytes se deben enviar seguidos, antes de enviar un reinicio.

Leer RAM [BEH]

El comando BEH permite leer todo el contenido de la memoria RAM. La lectura comenzará en el Byte 0 y continuará a través de la memoria hasta el noveno Byte (Byte 8, CRC). Si no se quieren leer a todos los registros, el maestro podría enviar un reinicio para interrumpir la lectura en cualquier momento.

Copiar RAM [48H]

Con el comando 48H se copian los 2/3 Bytes (DS18B20: TH, TL y Config) desde la memoria RAM a la memoria EEPROM (no volátil) del DS1820. Mientras dure el proceso de copia, el DS1820 cargará la línea del Bus, midiendo un valor ‘0’, y se medirá un nivel alto ‘1’ (pull-up) cuando el proceso de copia termine.

Convertir Temperatura [44H]

El comando 44H inicia la conversión de la temperatura, y no se requieren más datos. Mientras dure el proceso de conversión y copia de datos en la RAM, el DS1820 cargará la línea del Bus, midiendo un valor ‘0’, y se medirá un nivel alto ‘1’ (pull-up) cuando el proceso termine.

Leer EEPROM [B8H]

Este comando copia los valores de referencia de temperatura  (TH/TL) y la configuración (Config sólo con DS18B20) almacenada desde la EEPROM a la memoria RAM. Esta operación de recuperación se realiza automáticamente cada vez que se alimenta el DS1820. Mientras dure el proceso de la copia de datos en la RAM, el DS1820 cargará la línea del Bus, midiendo un valor ‘0’, y se medirá un nivel alto ‘1’ (pull-up) cuando el proceso termine.

Leer la fuente de alimentación [B4H]

Después del envío del comando B4H, el DS1820 indicará dentro de su intervalo de datos con un estado:

0 = DS1820 alimentado por el Bus

1 = DS1820 con fuente de alimentación externa.

Comunicaciones con DS1820
Comunicaciones con DS1820

En la imagen anterior, podemos ver un ejemplo del diálogo entre el micro-controlador (maestro) y el sensor de temperatura (esclavo), para obtener el valor de la temperatura y almacenar los valores de alarma máxima y mínima en su memoria.

HORARIO DE VERANO

En algunos países, existen dos tipos de horarios:

  1. Horario estándar, el que corresponde con el huso horario (Horario de invierno).
  2. Horario de verano

El cambio de hora se aplica una vez al año, haciendo que del horario estándar (o de invierno) se pase al horario de verano. Aunque la primera vez que se aplicó este cambio de hora fue durante la Primera Guerra Mundial, dejo de aplicarse hasta la crisis del petróleo de 1973. El objetivo es el de aprovechar mejor la luz solar, consumiendo menos electricidad.

Cambios horarios (Invierno/Verano)
Cambios horarios (Invierno/Verano)

La mayoría de los países que realizan este cambio horario, lo realizan en las siguientes fechas:

HORARIO DE VERANO

Último domingo de MARZO:  A las 2:00 AM  se adelanta a las 3:00 AM

… se adelante 1 hora el reloj

HORARIO DE INVIERNO

 Último domingo de OCTUBRE: A las 3:00 AM  se atrasa a las 2:00 AM

… se atrasa 1 hora el reloj

Configuración del Reloj LED (v2)
Configuración del Reloj LED (v2)

Este es el nuevo diagrama para la programación del Reloj LED, utilizando la versión 2 del firmware.