Energía SOLAR, aprovechando los excedentes

Controlando la conexión y desconexión de una toma de enchufe, en función de los excedentes de energía eléctrica que genera una instalación solar, es posible adaptar los consumos de la vivienda de forma automática, y reducir el coste de la factura.

Toma de red inteligente

Hace unos días  monté un controlador de encendido y apagado automático en dos equipos de aire acondicionado, para aprovechar una parte de la potencia excedente que generan los paneles solares en mejorar la climatización de la vivienda.

Climatización GRATIS… automatizando los excedentes de energía Solar

Toma de enchufe inteligente

Ahora complementaré este sistema de control, añadiendo una toma de alimentación portátil.  Esta toma de red la utilizaré para conectar equipos auxiliares, los cuales no necesiten permanecer siempre encendidos, consiguiendo así un ahorro extra en la factura eléctrica.

La toma de red se podría conectar a una regleta múltiple, y controlar varios dispositivos a la vez. La corriente máxima que soporten los contactos del interruptor que utilice,  definirán la potencia máxima de uso. La electrónica de este controlador de red no varía en función de la potencia que maneja, sólo se necesita definir los umbrales de encendido y apagado en el firmware, antes de cargarlo en el módulo ESP32.

Los posibles usos que podría tener esta toma de red son muchos. Por ejemplo para alimentar un termo de agua caliente auxiliar, un calefactor o radiador portátil, la depuradora de una piscina y su climatización, el punto de carga para un coche eléctrico… y cualquier otra cosa que se nos ocurra. Para el uso que yo le voy a dar, he fijado sus dos preset de encendido por excedente de potencia solar en 1,2kW y 2,2kW. Una vez programado el módulo, se podrá elegir el preset de funcionamiento a través del interface Web del ESP32. La desconexión automática de ambos preset es la misma, y siempre desconectará la carga cuando la potencia solar excedente sea inferior a 100W.

PRESET de encendido y apagado

En el montaje anterior, como protección para el aire acondicionado, configuré el intervalo de tiempo mínimo entre dos conmutaciones automáticas consecutivas con 3 minutos. En este caso, como la toma de red la utilizaré para otros usos, he reducido el tiempo de protección a 1 minuto, consiguiendo así un control de encendido/apagado más rápido.

Configuración inicial del interruptor de red inteligente

Los interruptores de RED

Los interruptores de red más utilizados son los de tipo mecánico, principalmente por su bajo precio y gran aislamiento cuando los contactos están abiertos. Para automatizar la conexión y desconexión eléctrica de cualquier dispositivo se utilizan relés, también llamados contactores.

Los relés funcionan a partir de una tensión de control de baja corriente, normalmente suministrada por un autómata o circuito micro-controlador. El accionamiento que permite el paso de corriente a la salida de un relé, puede ser mecánico o electrónico.

Relé mecánico

El problema principal de un relé de tipo mecánico, es la degradación de sus contactos cuando trabaja con corrientes altas, pudiendo producir con el tiempo falsos contactos y chisporroteo. Otro inconveniente es que su tiempo de accionamiento, al ser mecánico es lento y su retardo no siempre es el mismo, quedando limitando su uso para controlar equipos que no requieran velocidad ni precisión en sus maniobras.

Relé de estado sólido (SSR)

Los relés de estado sólido, también conocidos por su abreviatura en inglés SSR, no tienen partes móviles, son silenciosos, rápidos y no sufren degradación. El inconveniente principal es que no soportan picos de corriente superior al definido por el fabricante, porque se averían. En caso de avería, los relés SSR  normalmente se quedan con sus dos salidas en cortocircuito, manteniendo la carga permanentemente conectada a la red eléctrica y consumiendo energía.

Esquema del relé SSR

Al igual que los relés electromecánicos, los SSR se accionan con una pequeña corriente en su entrada. La tensión y su rango de funcionamiento, tanto de entrada como salida, dependen del modelo de SSR que se elija.

Antes de comprar un relé de estado sólido (SSR) es importante saber que existen tres tipos, tienen diferentes rangos de tensión en su entrada y salida, y su corriente de trabajo máxima está limitada. Los SSR se identifican en su referencia con las dos letras finales, indicando si se activan con tensión continua o alterna:

  • DA: Tensión continua en la entrada y alterna en la salida
  • AA: Tensión alterna en la entrada y en la salida
  • DD: Tensión continua en la entrada y en la salida

Detalles del Montaje

Para hacer este interruptor automático, he utilizado un relé SSR-40 tipo DA. Es un relé sólido que se activa con una tensión continua en su entrada, y permite controlar el paso de una tensión alterna de 40A como máximo en sus dos terminales de salida. El inconveniente es que para soportar esa corriente máxima de 40A, sería necesario montarlo con un disipador.  Como voy a utilizar este SSR sin disipador, con el fin de reducir el tamaño del circuito, he limitado su carga máxima intercalado un fusible rápido de 15A. Con esta corriente se podrían controlar consumos de hasta 3kW sin problemas,  potencia más que suficiente para el uso que le quiero dar.

Esquema del interruptor de red inteligente

El rango de tensión de control de este SSR va desde 3 hasta 32V de tensión continua. Como lo voy a controlar con un ESP32 y funcionan a 3,3V, tensión muy próxima a la mínima de control de este SSR, he medido todo antes de diseñar el circuito. He comprobado que este SSR funciona conectando una tensión continua a partir de 2,5V, y consume aproximadamente 8mA. La corriente de control sube ligeramente a medida que sube la tensión de disparo, con 5V consume 10mA aproximadamente.  Así que no habría problema para controlarlo directamente con el ESP32. Para proteger el pin de control del módulo ESP32, he intercalado un transistor NPN configurado en modo seguidor de emisor, conectando el colector del transistor al +5V de la fuente de alimentación. Así la corriente de control del SSR la suministrará la fuente de alimentación, y no pasará a través del pin de salida del módulo ESP32.

Los componentes que hay que añadir  en este montaje son muy pocos, y al igual que hice con el controlador del aire acondicionado, los he montado y cableado todos en una placa aislante. He utilizado también los mismos pines del módulo ESP32, pero en este caso invirtiendo los pines de entrada y salida. He utilizado como salida el pin GIO2, porque así el LED azul del módulo ESP32 se encenderá cuando se esté disparando el control del SSR. Para disponer de esta indicación en el exterior y al mismo tiempo comprobar que el transistor funciona correctamente, he añadido otro LED junto con su resistencia limitadora, conectado en los terminales de entrada del SSR.

El pin TMS/GPIO14 está configurado como entrada en modo Pull-Up, y se utiliza con un interruptor a masa, para  forzar su funcionamiento a modo manual. Cuando el interruptor está cerrado, el módulo ESP32 mantendrá de forma indefinida la tensión de salida de 230VAC, aunque la potencia del excedente solar sea inferior a 100W. De la misma forma, también es posible conectar y desconectar la tensión de salida en cualquier momento a distancia, utilizando el interface Web del ESP32.

Interface WEB

A través del interface Web del ESP32 es posible deshabilitar por completo el circuito de control, evitando así que el módulo SSR entregue tensión a su salida, incluso aunque estuviera su interruptor en modo manual. Cuando se deshabilita el control del SSR, el módulo ESP32 deja de realizar consultas al inversor  y desaparecen las medidas de potencia, tanto en el interface Web como el display  OLED. En este caso el display OLED funcionaría en modo reloj, mostrando únicamente la fecha y hora local con precisión.

Interface WEB del interruptor inteligente

Para evitar las molestias que podría ocasionar la luz del display OLED durante la noche, he añadido la opción de su apagado nocturno. Cuando el display  OLED está configurado en modo día, nunca se apaga. Y si se configura en modo noche, el display  OLED se encenderá a partir de las 7:00 y se apagará a partir de las 23:00. Esta modificación también la he añadido en la última actualización del firmware del controlador del aire acondicionado (v1.54).

Firmware del ESP32

El firmware que necesitas para programar el microcontrolador ESP32, lo puedes descargar de forma gratuita desde el siguiente enlace:

https://github.com/J-RPM/Consumption-control-of-surplus-solar-energy

Caja 3D

Piezas 3D, para la toma de red automática

Los ficheros .stl que necesitas para fabricar estas piezas, lo puedes descargar desde el siguiente enlace: https://www.thingiverse.com/thing:6135400

¿Dónde fabricar el PCB?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos, pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

Logo: PCBWay

https://pcbway.com/g/r7N1ct

 

Climatización GRATIS… automatizando los excedentes de energía Solar

Actualización del firmware del reloj de precisión (ESP32), para controlar el encendido y apagado automático de dos equipos de aire acondicionado. Automatizando el consumo eléctrico en función de los excedentes de energía Solar, se puede reforzar el sistema de climatización de una vivienda a coste cero.

Control AC, conectado en el evaporador SAMSUNG

Excedentes de energía Solar

Cuando se instalan paneles solares en una vivienda, es muy importante adaptar los hábitos del consumo con los de mayor producción solar, porque esta es la forma más rápida de amortizar la inversión.  Hay electrodomésticos que no se pueden adaptar a las horas de sol, como son los frigoríficos y cocinas, pero hay otros que sí. Por ejemplo: lavadora, lavaplatos, secadora, plancha y los equipos auxiliares de climatización.

Gráfica del consumo y potencia solar

La ventaja principal de una instalación solar orientada al autoconsumo de una vivienda, es que durante el día se podría disponer de una potencia de pico superior a la contratada. Además esta energía es  gratis, y se genera en los periodos en los que el precio de la electricidad es más cara, produciendo así un ahorro mayor en la factura.

Por otra parte, con la energía solar sobrante se podría mejorar el sistema de climatización de la vivienda, consiguiendo así un mayor confort a coste cero. La climatización de una vivienda siempre es mejorable, porque intentaremos reducir su coste al mínimo imprescindible, limitando el uso de la calefacción en el invierno y del aire acondicionado en verano.

Automatizar el consumo eléctrico

Hacer un uso eficiente de la energía solar sobrante para aplicarla a la climatización no parece complicado, el  problema es que la radiación solar es muy variable y podría provocar picos de consumo extra cuando cambian las condiciones meteorológicas. La solución sería automatizar la conexión y desconexión de  los sistemas de climatización y agua caliente auxiliares, adaptándolos a los excedentes de producción solar.  Así estos elementos de climatización auxiliar utilizarían la energía sobrante y se desconectarían rápidamente de forma automática. Por ejemplo al aumentar el consumo en la vivienda por haber conectado la lavadora, o debido a la caída de la producción solar al paso de nubes.

Hace unos meses hice una adaptación del reloj de precisión construido con un módulo ESP32, para poder visualizar los valores de producción solar en su display. Esta información es muy útil, porque muestra la energía sobrante que podríamos utilizar a coste cero.

Supervisor solar Fronius

En esta ocasión haré unas modificaciones sobre el firmware anterior, para poder controlar el encendido y apagado automático de dos equipos de aire acondicionado. En concreto lo voy a controlar los dos splitter de un equipo SAMSUNG, modelo AM18A1E09. A través del interface Web de control del ESP32,  es posible configurar los umbrales de encendido y apagado de forma  individual, configurando a uno de ellos como principal y al otro como secundario.

Interface WEB del ESP32

Así el equipo configurado como 1 será el principal,  se conectará el primero y se apagará el último, provocando menos cortes de encendido/apagado que el número 2. Según el fabricante SAMSUNG, cada splitter consume aproximadamente 0,87 kW. Así la configuración de encendido del equipo principal se hará cuando el excedente de potencia sea superior a 1,5 kW, y se desconectará cuando el excedente sea inferior a  100W. El equipo secundario se conectará cuando el excedente de potencia sea superior a 1,7 kW y se desconectará cuando el excedente sea inferior a  300W.

Compatibilidad con el funcinamiento en modo manual

Este controlador de encendido y apagado es totalmente compatible con el funcionamiento manual del aire acondicionada, ya sea a través del pulsador de encendido del splitter, o de su mando a distancia. Cuando se conecta el aire acondicionado utilizando el mando a distancia o su pulsador de encendido, el módulo de control detectará que está funcionando en modo manual, y no tomará el control del equipo.  Cuando se desconecte el equipo de forma manual, después de 3 minutos,  el módulo ESP32 tomará el control automático de encendido y apagado. En caso de que no se quisiera conectar  el aire acondicionado en ningún momento, por ejemplo en invierno, se podría deshabilitar la función de control mediante el interface Web del  ESP32, o desconectar la alimentación del módulo de control mediante su interruptor. Con el fin de proteger el compresor del equipo, he fijado el intervalo de tiempo mínimo entre dos maniobras en 3 minutos. Esta limitación es sólo en modo automático, porque desde el interface Web del ESP32,  el mando a distancia o el pulsador del splitter,  se podrá encender y apagar el equipo en cualquier momento.

Montaje del controlador y sus conexiones, en un equipo SAMSUNG modelo AM18A1E9

Aunque este equipo de aire acondicionado sea doble, cada evaporador funciona de forma independiente y habría que montar su propio controlador.

Conexiones entre el compresor y los 2 evaporadores SAMSUNG

Este control automático está construido con un módulo ESP32 y un pequeño display OLED. Como el firmware del módulo ESP32 es totalmente compatible con el reloj de precisión, sería posible montar  también el display de 8 dígitos y el amplificador de audio.

Esquema de conexiones del controlador en el evaporador SAMSUNG

Este circuito está formado por 3 bloques: el interface de entrada, el circuito de control (ESP32) y el interface de salida:

Interface de entrada

Es el circuito detector de estado del  evaporador o splitter, y es necesario para informar al módulo de control si el equipo está funcionando o parado. Como el ventilador del evaporador siempre estará alimentado cuando el equipo funciona, lo he tomado como referencia. El ventilador de este equipo tiene dos devanados, entre los hilos azul y amarillo he medido una tensión alterna de 120V aproximadamente, y entre los hilos azul y rojo de 160VAC. Ambas tensiones apenas varían con la velocidad del ventilador, pero he tomado como referencia la tensión de los hilos azul y rojo, porque me han parecido más estables. Para aislar la tensión de red del circuito de control, he intercalado el opto-transistor H2210. He utilizado este modelo  porque tengo varios, pero podría utilizarse cualquier otro. El LED del opto-transistor se encenderá al recibir la tensión alterna del ventilador, pero esta tensión alterna de 160V hay que convertirla a continua y reducirla a 1 voltio aproximadamente. De esto se encarga el rectificador de media onda junto con la resistencia limitadora y el condensador de filtro. Al rectificar en media onda, la disipación en la resistencia es menor  y con una resistencia de 47K 1/4W  funciona perfectamente. El condensador de filtro de 1000uF es muy importante, porque hay que evitar que el rizado de 50Hz se transmita al circuito de salida. El transistor de salida del opto-acoplador conducirá cuando el evaporador esté funcionando, provocando que el siguiente transistor deje de conducir y entregue un nivel alto en el pin IO2 del módulo ESP32. He utilizado este pin porque va conectado con el LED azul del módulo ESP32, y esta indicación es muy útil para hacer pruebas. Para evitar posibles transiciones de estado debido a ruidos de la fuente de alimentación o inducciones generadas por el propio módulo ESP32, he añadido en la propia placa del módulo un condensador cerámico de 100nF. A pesar de que el módulo ESP32 funciona con 3 voltios, no hay problema en conectar la resistencia de colector del transistor a 5V, porque hay una resistencia en serie de 10K y la corriente será muy baja.

Hay que tener en cuenta que la placa de control de este equipo de aire acondicionado realiza un test cada vez que se da la orden de puesta en marcha, y tarda alrededor de 8 segundos en alimentar el ventilador del evaporador. Al apagar no sucede lo mismo, porque corta la alimentación del ventilador de inmediato. Para gestionar adecuadamente los estados desde el controlador y no producir falsas maniobras, en el firmware se produce una pausa de 10 segundos desde que se da la orden de arranque, antes de comprobar si el ventilador está alimentado. Cuando se da la orden de apagado, esta pausa se reduce a 2 segundos, es el tiempo necesario para mostrar la orden en el display OLED, antes de presentar el estado de funcionamiento del equipo.

Módulo de control ESP32

Es el encargado de gestionar las órdenes de control y mostrar la información en el display OLED, y de forma opcional en otro de 8 dígitos de 7 segmentos. Durante las pruebas, en alguna ocasión se quedó colgado el módulo ESP32 al conectar su alimentación, pero sólo sucedía cuando lo alimentaba con la fuente conmutada. Para solucionar este problema, he colocado un condensador de 10uF en los terminales de entrada de 5V del módulo ESP32.

Interface de salida

Es el encargado de enviar la orden de cambio de estado al evaporador del equipo de aire acondicionado. He utilizado el pin rotulado como TMS, el cual se corresponde con el GPIO14.

MH-ET_LIVE_D1_mini_ESP32_pinout

Este circuito actúa como si se pulsara el botón de encendido/apagado del evaporador, y lo hace mediante un transistor NPN en modo Open-Collector. Si medimos la tensión en el PCB de control del evaporador, entre los dos terminales del pulsador hay 5V de tensión continua y uno de los dos terminales es GND. Así el transistor de este módulo de control puede conectarse en paralelo de forma permanente, sin interferir al funcionamiento normal del equipo. Es importante conectar cada terminal en su sitio, el colector del transistor de salida se conecta con el terminal  del pulsador en el que hemos medido +5V (terminal superior del pulsador).

Al alimentar el circuito de control me encontré con un problema, porque también se encendía el aire acondicionado. Cuando se reinicia el módulo ESP32 aparece una tensión alta en el pin TMS durante algo menos de 1 segundo, el tiempo que tarda el ESP32 en cargar los estados de inicio de sus pines,  pero este tiempo es suficiente para crear una pulsación y provocar un cambo de estado en el evaporador. Para evitar este problema, he añadido un circuito RC en la entrada del transistor de control, compuesto por una resistencia de 100K y un condensador de 100uF. De esta forma es necesario recibir una tensión alta durante 2 segundos como mínimo, para provocar que el transistor empiece a conducir y se genere el cambio de estado. Como es lógico, los impulsos de control del cambio de estado los he tenido que configurar a 3 segundos.

Fuente de alimentación

Este control automático se alimenta con 5 voltios de continua, tensión que podría haber tomado de la placa de control del evaporador, pero es más seguro y fiable montar una fuente de alimentación aparte.

Vista interior del evaporador SAMSUNG

Los 230VAC de la fuente de alimentación se toman de los terminales 1 y 2 del  evaporador, intercalando un pequeño interruptor en serie para poder desconectar por completo el circuito en cualquier momento.

Conexiones con el evaporador

He utilizado una placa aislante, para montar todos los componentes externos con el módulo ESP32. En un lateral está la clema de 4 conexiones, para conectar la alimentación de 5V (2 conexiones), la detección de encencido del evaporador GPIO2 y la salida TMS-GPIO14 para conectar con el transistor 2N2222 que contralará el encendido y apagado del evaporador (pulsador).

Vista interior del control automático

Las otras 3 clemas de 2 conexiones, son los 6 hilos que unen el controlador con el evaporador:

1 – Alimentación del controlador (230VAC)

  • Marrón: FASE
  • Azul: NEUTRO

2 – Tensión de los ventiladores (160VAC)

  • Naranja: FASE
  • Azul: NEUTRO

3 – Pulsador ON/OFF del evaporador

  • Rojo: +5
  • Negro: GND

Firmware del ESP32

El firmware que necesitas para programar el microcontrolador ESP32, lo puedes descargar de forma gratuita desde el siguiente enlace:

https://github.com/J-RPM/Solar-controller-with-ESP32

Caja 3D

Caja 3D, para el controlador del aire acondicionado

El fichero .stl que necesitas para fabricar esta caja, lo puedes descargar desde el siguiente enlace: https://www.thingiverse.com/thing:6118679

¿Dónde fabricar el PCB?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos, pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

Logo: PCBWay

https://pcbway.com/g/r7N1ct

Medir la toma de tierra con dos polímetros

Cuando se instalan paneles solares en la vivienda, es importante disponer de una buena toma de tierra. La estructura metálica que soporta los paneles se suele instalar en los tejados, y la carga electrostática que se genera en las tormentas podría llegar a la estructura de todos los electrodomésticos a través del cableado de tierra. Siempre que se pueda, se debería instalar una red de tierra independiente para el equipamiento de energía solar. Vamos a ver un método muy sencillo para medir la resistencia de las tomas de tierra, cuando no se dispone del equipamiento de medida adecuado (Telurómetro)… sólo necesitas dos polímetros.

Medir la resistencia de la toma de tierra con dos polímetros

Tensión del suministro eléctrico

En una central de transformación, la salida del Neutro normalmente se une con la toma de tierra, manteniendo así un potencial de 0 voltios entre NeutroTierra, y 230 voltios entre FaseNeutro,  o Fase-Tierra.  Dependiendo de la resistividad del terreno, la distancia desde la central de transformación y la calidad de la toma de tierra de la vivienda, estas tensiones varían. Un indicador bastante bueno para saber si la calidad de la toma de tierra de la vivienda es buena, es medir la tensión entre Neutro-Tierra y entre Fase-Tierra. Cuanto más próximas sean a los valores de la central, de mejor calidad será la tierra de la vivienda.

Estado de la toma de tierra

Para hacer esta comprobación, tomaremos como referencia la tensión que tengamos en ese momento entre Fase y Neutro, aunque lo ideal sería hacer las 3 medidas a la vez.

Comprobar el estado de la toma de tierra

En este ejemplo medimos 230,5 VAC. Después medimos entre Fase y Tierra, y tenemos 228,5 VAC, una diferencia de 2 V con respecto a la referencia. Ahora hacemos la misma medida utilizando la segunda toma de Tierra, y medimos 227,6 VAC. Al ser este valor más alejado a la tensión de referencia con respecto a la tierra de la vivienda, y además la tierra de la vivienda está conectada al cuadro eléctrico, no está aislada como la segunda, sabemos que la toma de tierra secundaria es de peor calidad que la toma de tierra instalada en la vivienda.

Al medir la tensión entre Neutro y Tierra, comparando ambas medidas, comprobamos que la tensión con la tierra secundaria es más próxima a 0V. Esta medida sería significativa si ambas tomas de tierra estuvieran aisladas, sin equipos conectados. En este caso podríamos interpretar que la segunda tierra es mejor que la de la vivienda, pero se podrían invertir los valores en otro momento, porque la tierra de la vivienda tiene equipos conectados que podrían estar derivando corriente, y la tierra secundaria está abierta.

Si medimos tensión entre ambas tierras, medimos 4mV, y con tensión no podemos utilizar el polímetro para medir resistencias.

Valores recomendados de resistencia a tierra

Lo ideal es que la resistencia de la toma de tierra fuera de 0 Ω, pero se consideran valores buenos entre 25 y 40 Ω, dependiendo del país y las condiciones del terreno. Cuando se trata de instalaciones sensibles, lo ideal es que el valor de la resistencia a tierra fuera inferior a 5 Ω.

Según se define en el Reglamento electrotécnico de baja tensión REBT 2002, el valor de resistencia de tierra será tal que cualquier masa no pueda dar lugar a tensiones de contacto superiores a 24V y 50V, y fija el valor medio de la resistencia eléctrica del cuerpo humano en 2.500 Ω. Teniendo en cuenta que en la instalación eléctrica se emplea normalmente como protección un interruptor diferencial de 30mA, el valor máximo de la resistencia de tierra será de 1.666 Ω para tensiones de contacto de 50V y de 800 Ω para tensiones de contacto de 24V.

  • Rt = 50V/30mA = 1.666 Ω
  • Rt = 24V/30mA = 800 Ω

Reglamento eléctrico de baja tensión

Para facilitar la rápida desconexión del interruptor diferencial, es conveniente conseguir que los valores de la resistencia de tierra estén siempre por debajo de estos valores, teniendo en cuenta las condiciones cambiantes del terreno y la climatología.

El interruptor diferencial y toma de tierra

Exista o no una toma de tierra en nuestra instalación eléctrica, los interruptores diferenciales cortan el suministro eléctrico cuando se supera una corriente de fuga superior a 30mA, protegiendo así a las personas contra una posible electrocución. Disponer de una buena toma de tierra en la vivienda es fundamental para evitar descargas desagradables al tocar los electrodomésticos. Una buena toma de tierra impide el paso de corriente de cualquier aparato eléctrico defectuoso hacia las personas, disparando de forma automática el interruptor diferencial de la vivienda cuando esto ocurre.

Toma de tierra con paneles solares

Cuando se instalan paneles solares en una vivienda, se monta una gran estructura metálica, normalmente en los tejados. Para proteger los inversores, encargados de convertir la tensión continua de los paneles en tensión alterna, para luego inyectarla en paralelo con la instalación eléctrica, se instalan descargadores de sobretensión en las tomas de conexión con los paneles. Así se evita que entren picos de tensión en el inversor cuando hay tormentas… pero estos descargadores también hay que conectarlos a una toma de tierra.

Dos tomas de tierra separadas

Si conectamos la estructura metálica de los paneles y los descargadores a la toma de tierra de la vivienda, cuando la toma de tierra de la vivienda no es muy buena, parte de esas descargas eléctricas se distribuyen por el mismo cable hacia todos los enchufes, llegando así a la estructura metálica de todos los electrodomésticos.

Si queremos evitar que esto suceda, lo mejor es instalar una toma de tierra auxiliar, independiente de la toma de tierra de la vivienda. Conectando ahí todas las tierras del equipamiento de energía solar. De esta forma se facilita el paso eléctrico de cualquier descarga eléctrica hacia la nueva pica de tierra, y se impide así que entre parte de esa tensión hacia la estructura de los electrodomésticos.

Medida de tierra con dos polímetros

Aunque existen equipos de medida específicos  para medir el valor resistivo de las tomas de tierra (Telurómetro), también es posible hacer esta medida con gran precisión utilizando un voltímetro junto con un miliamperímetro de corriente alterna.

Medir la resistencia a tierra con un Telurómetro

Midiendo los valores de tensión y corriente de forma simultánea, se puede calcular el valor de la resistencia aplicando la Ley de Ohm. Como la precisión de esta medida dependerá de la tolerancia sumada de dos instrumentos de medida diferentes, es aconsejable utilizar dos polímetros de calidad.

IMPORTANTE

Para hacer medidas en la red eléctrica es necesario tener muy claro lo que se está haciendo, porque siempre existe el riesgo de electrocución. Es muy importante utilizar gafas y guantes de protección y seguir un orden, en este caso:

  • Seleccionar las medidas tensión/corriente y sus escalas en los polímetros
  • Interconectar el cableado de ambos medidores, y no tocar los selectores de los polímetros cuando estén conectados a la red eléctrica.
  • Conectar el sistema de medida con la red eléctrica, y tomar una fotografía en la que se vean con claridad los valores de tensión y corriente de ambos medidores.

Nunca se deberían hacer este tipo de medidas en la entrada de la acometida eléctrica, y tampoco se debería manipular el cableado eléctrico sin disponer de una protección diferencial.

Resistencia entre dos tomas de tierra

Hacer esta medida en una vivienda no tiene mucho sentido, pero la hice para saber si la pica de tierra de la vivienda está alejada de la otra o no. Las pruebas las hago alimentando una bombilla de filamento de 230V / 100W, y haciendo circular la corriente entre ambas tomas de tierra. Midiendo la caida de tensión entre ambas tierras y la corriente que circula, aplicando la Ley de Ohm obtenemos el valor de resistencia entre ambas tomas.

No es buena idea hacer este tipo de pruebas sin tomar medidas de precaución, y sin estar seguro de lo que se hace. Por otra parte, esta prueba no se puede hacer inyectando tensión de la red eléctrica, porque saltaría el diferencial, y NUNCA se deberían manipular los cableados antes de dicha protección.

Para hacer esta medida he utilizado un inversor de red de onda modificada de 2000W, alimentado con una batería de coche. He montado todo el circuito conectando el cableado del polímetro para medir la caída de tensión entre ambas tomas de red, y la pinza amperimétrica para medir la corriente. Después he conectado el interruptor del inversor un instante, el tiempo que me ha tomado hacer la fotografía.

Medir la resistencia entre dos tomas de tierra

La fotografía de la izquierda es la referencia, conectando la tensiín del inversor directamente a la bombilla. Como vemos el inversor entrega 209,5 voltios y circula una corriente de 0,31A. Al ser algo baja la tensión de alimentación, la bombilla está consumiendo 65W en lugar de 100.

En la fotografía de la derecha vemos que hay una caída de tensión de 74,9 voltios entre ambas tomas de tierra, y circula una corriente de 0,25A. Por lo tanto la resistencia entre ambas tomas de tierra es de (74,9/0,25) 299,6 Ω. Aunque sigo sin saber dónde está montada la pica de tierra de la vivienda, con esta medida entiendo que está lo suficientemente lejos de la nueva toma de tierra.

Medir la resistencia de una toma de tierra

Para medir la resistencia de las dos tierras de forma individual, vamos a provocar una fuga de corriente entre Fase y Tierra, mediante una resistencia de valor conocido. Como la suma de corriente de fugas de todos los equipos conectados a la instalación eléctrica tiene que ser inferior a 30mA,  siempre que la instalación no esté al límite podremos añadir una corriente de fuga adicional próxima a 10mA, y así ya tenemos  una buena  resolución en la medida de corriente. Si al hacer las pruebas ‘saltara’ el diferencial, bajando los magnetotérmicos de todos los electrodomésticos se desconectan sus filtros de red, y se reducirá notablemente la corriente de fugas en toda la instalación.

Procedimiento de la medida

Esta prueba la hago con dos resistencias de potencia, cerámicas de 15 KΩ, montadas  en serie. Con 30 KΩ se producirá una corriente de fuga de 7,66 mA a una tensión de 230 voltios. Para hacer esta medida es importante utilizar resistencias de potencia, con el fin de evitar que aumente su valor resistivo al paso de la corriente y nos falseen las medidas.

Cada vez que realicemos una medida, tomaremos como referencia la tensión entre Neutro y Tierra antes de conectar la resistencia entre Fase y Tierra. Este valor lo tendremos que restar del valor que midamos después de conectar la resistencia.  Si el polímetro que utilizamos dispone de un botón de referencia (REL), lo pulsamos antes de conectar la resistencia y el display mostrará 0V. De esta forma evitamos tener que hacer la resta, porque la medida de tensión que muestre el polímetro cuando conectemos la resistencia será la diferencia entre ambas medidas.

Para hacer esta medida es imprescindible aislar la tierra y desconectar todos los disyuntores que nos sea posible en el cuadro eléctrico, con el fin de reducir la carga de corriente del hilo del Neutro al máximo, y evitar posibles fluctuaciones de tensión entre Neutro y Tierra cuando estemos haciendo las medidas.

Toma de tierra de la vivienda

Medidas en la toma de tierra de la vivienda

Después de pulsar el botón REL del voltímetro, al conectar la resistencia entre fase y la tierra de la vivienda, medimos 0,1V entre Neutro y Tierra y una corriente de 7,51 mA. La tierra de la vivienda mide: 0,1V/7,51 mA = 13,3 Ω

Toma de tierra secundaria, en seco

Medidas en la toma de tierra secundaria en seco

Ahora quitamos de los polímetros la tierra de la vivienda, conectamos la otra y volvemos a pulsar el botón REL del voltímetro.  Al conectar la resistencia entre Fase y la segunda Tierra, medimos 1,787V entre Neutro y la Tierra 2 y una corriente de 7,45 mA. En seco, la segunda tierra mide: 1,787V /7,45 mA = 239,8 Ω

Toma de tierra secundaria, en mojado

Medidas en la toma de tierra secundaria en mojado

Después de mojar la pica de la segunda toma de tierra, al conectar la resistencia entre Fase y Tierra, medimos 0,636V entre Neutro y Tierra una corriente de 7,45 mA. En mojado, la segunda tierra mide: 0,636V /7,45 mA = 85,3 Ω

Observaciones

Al tratarse de una pica de tierra de tan solo 60 cms, y además dentro de un bloque de hormigón, al mojar la toma de tierra ha bajado notablemente el valor de su resistencia. A pesar de que ambos valores son altos, se mantienen por debajo de 800 Ω y se cumple con las especificaciones del reglamento de baja tensión para tensiones de contacto de 24V.

¿Necesitas fabricar un circuito impreso?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

Logo: PCBWay

https://www.pcbway.es/