Bingo electrónico

Construcción de un Bingo electrónico, fabricando una matriz con 90 diodos LED de forma artesana (sin circuito impreso). Este montaje es muy adecuado para que lo pueda realizar cualquier aficionado a la electrónica.  El Bingo electrónico está construido a partir del micro-controlador AT89S52.

En la primera parte del video se muestra la fabricación de la matriz, en una carcasa de fibra plástica, y se fresan con una CNC los números en una lámina de plexiglás (PMMA) semitransparente.

En la segunda parte del video se analiza el esquema eléctrico, realizando la construcción de la lógica de control y la comprobación de funcionamiento. También se explica el sistema de multiplexación, midiendo las formas de onda con el osciloscopio. Al final, se realiza la construcción del frontal con serigrafía, y se construye una caja utilizando madera reciclada.

MULTIPLEXACIÓN

En la imagen siguiente se muestra el mapa de memoria del Bingo, necesaria para almacenar y mostrar en la matriz LED los números que van saliendo.

Mapa de memoria

La información de los 90 números del Bingo se almacena en 12 Bytes RAM del micro-controlador (12 Bytes X 8 Bit = 96). El Bit menos significativo  (LSB) del primer Byte contiene el  estado del número 1 del Bingo (LED: On/Off). El Bit más significativo del Byte 11 contiene el estado del número 88; y del Byte 12 de la memoria sólo se utilizan los 2 Bit menos significativos, asignados a los números 89 y 90 del Bingo.

Para mostrar toda la información del Bingo en el panel frontal, es necesario multiplexar en el dominio del tiempo 11 informaciones diferentes: las 9 líneas del panel numérico + 2 para el display de 7 segmentos. Como las líneas van conectadas a los ánodos de los diodos LED, el micro-controlador tiene que habilitar de forma secuencial y cíclica cada una de las 11 líneas de control, generando un impulso positivo en cada instante. Como se puede ver en el mapa de memoria, las 8 primeras líneas van conectadas al puerto 2 del AT89S52, la 9ª línea al P3.6, la 10ª línea al P1.1 y la 11ª al P1.0.

Multiplexado
Frecuencia de refresco

En este oscilograma se muestra la forma de onda de una de las 9 líneas de control del panel numérico. Con esta medida podemos conocer el tiempo que está encendido cada diodo LED (237 uSeg) y su velocidad de encendido = frecuencia de refresco (311 Hz). La frecuencia de refresco tiene que ser superior a la persistencia del ojo humano, procurando siempre que esta velocidad sea lo más alta posible, con el fin de evitar el efecto parpadeo o estroboscópico, al mezclarse dos fuentes de luz de frecuencia diferente.

¿Cómo se genera el número?

La generación del número aleatorio se basa en el modo de funcionamiento del sistema mecánico, mediante la extracción de una bola numerada del bombo. En un Bingo tradicional (mecánico), al principio hay 90 bolas numeradas dentro del bombo, y en cada extracción el número de bolas va disminuyendo de una en una.

En este Bingo electrónico, la generación del número se hace siguiendo estos pasos:

  • El micro-controlador utiliza un contador (Timer) que modifica su valor a una velocidad de 2 millones de valores por segundo aproximadamente (0,5 uSeg).
  • El valor del número máximo de este contador se limita en función a la cantidad de números que faltan por salir en el Bingo. Al principio el número máximo es 90 y va decreciendo a medida que se van extrayendo los números (igual que el número de bolas de un bombo mecánico).
  • En el momento que se pulsa el botón, el micro-controlador toma el valor del número generado por el contador, y este valor lo asigna al ‘hueco libre’ que queda en la tabla de números que faltan por salir.
  • Con ese valor, el micro-controlador busca el ‘hueco libre’ dentro de la tabla de números, empezando desde el número 1 hasta el 90, y luego asigna esta posición de ‘hueco libre’ al número real… ocupando el hueco y mostrando el número real en el display de 7 segmentos

De esta manera, las probabilidades de salir un número determinado son las mismas que en un bombo mecánico (es totalmente aleatorio). Por otra parte, se evita la generación de números ya extraídos.

Circuito de control (CPU)

Esquema BINGO

Siguiendo el esquema es muy fácil montar todos los componentes en una placa de circuito impreso de tipo universal (taladros sin conexiones). Las conexiones se pueden realizar por debajo, creando las pistas del circuito con hilo fino de cobre y estaño. Si se colocan bien los componentes, las conexiones estarán muy próximas y no será necesario realizar puentes para atravesar las pistas. Una vez finalizado el montaje, el micro-controlador AT89S52 se puede programar directamente en la placa, utilizando las conexiones ICSP que se muestran en el esquema.

El firmware de este Bingo se puede descargar de forma gratuita desde el siguiente enlace: J_RPM_v1_BINGO.HEX

Si no dispones de un programador, podrías utilizar Arduino para hacerlo:

Programador ICSP con ARDUINO

EL CIRCUITO IMPRESO #3

Fabricar un circuito impreso con una placa PCB virgen, fotosensibilizada para positivo. Partiendo de un fotolito que sacaremos con la impresora, utilizando láminas transparentes para impresoras láser, seguiremos todo el proceso paso a paso. Tanto el revelador como el atacador del circuito impreso, lo haremos con productos fáciles de localizar en tiendas de limpieza.

C_Impreso

Otros métodos para realizar tus propios circuitos impresos:
EL CIRCUITO IMPRESO #1
EL CIRCUITO IMPRESO #2

Reloj LED de pared

Kit Reloj LED (FC-209)
Kit Reloj LED (FC-209)

Partiendo del desarrollo del kit de reloj de esfera rotante FC-209, fabricaremos un reloj de mayor tamaño para poder colgarlo en la pared. Los pulsadores irán situados en el frontal de la esfera, y así podremos utilizarlo en modo cronómetro… muy útil para temporizar los ejercicios en un gimnasio, utilizarlo como temporizador en la cocina, etc. Este reloj dispondrá de las mismas funciones que tenía la última revisión del firmware (v5), pero en esta versión (v6) vamos a utilizar un cristal de cuarzo de frecuencia más alta (con el fin de mejorar la velocidad de refresco) y también sustituiremos la pila de botón por una pequeña batería recargable.

Registro de carga del DS1302
Registro de carga del DS1302

La recarga de esta batería será permanente, siempre que esté alimentado el reloj, y la controlará el propio chip de reloj DS1302.

La versión 6 del firmware, se puede descargar de forma gratuita desde el siguiente enlace: J_RPM_v6_EC1204B.HEX

En este reloj, el display de 4 dígitos BCD lo construimos con diodos LED. Montaremos 2 diodos por cada segmento (se podrían montar más), de los 7 que se compone un dígito BCD. Al conectar 2 diodos en serie de alto brillo, necesitaremos una tensión de alimentación superior a los 5V que disponemos para alimentar el reloj. Con el fin de poder adaptar este circuito con cualquier configuración que utilicemos para construir los dígitos (número de diodos en serie por segmento), utilizaremos el módulo elevador de tensión MT3608.

Esquema MT3608
Esquema MT3608

La tensión de salida de este módulo la utilizaremos para alimentar los 4 dígitos del reloj. Mediante el potenciómetro de ajuste de tensión, podremos adaptar la tensión de alimentación  y modificar el brillo de los 4 dígitos centrales.

Esquema del Reloj (v6)
Esquema del Reloj (v6)

En este esquema se muestran los componentes que irán instalados en la placa de circuito impreso. Tanto los diodos LED como sus resistencias limitadoras, irán instalados en una placa de plástico.

Ensamblado de los diodos LED
Ensamblado de los diodos LED

Con el fin de facilitar la realización del circuito impreso, no he utilizado un programa de diseño PCB, simplemente lo he dibujado utilizando el software ‘Paint’ que incorpora Windows en todos sus sistemas operativos. El circuito impreso de la imagen siguiente, está a escala DIN-A4. Puede imprimirse directamente en papel, o utilizar una lámina transparente (especial para impresoras láser) para conseguir un fotolito a escala.

Fotolito del Reloj LED
Fotolito del Reloj LED

Siguiendo el esquema de conexionado que se muestra en la imagen siguiente, podremos terminar el montaje. Como la tensión de alimentación de este reloj es de 5V, podremos utilizar cualquier cargador que tengamos para alimentar dispositivos móviles. El alimentador de 5V podría instalarse en el interior… o fuera con el fin de poder utilizar este reloj con baterías (Power Bank).

Montaje: Reloj 15x15
Montaje: Reloj 15×15

El modo de funcionamiento y ajustes de este reloj (v6), es idéntico al que se mostró en la última versión del firmware (v5):

Configuración del Reloj LED (v5)
Configuración del Reloj LED (v5)

En la primera parte del video se muestra el diseño del reloj, la construcción del PCB y el montaje de todos los componentes:

En la segunda parte del video se muestra el proceso de fabricación de la carcasa, ensamblado y grabados con la CNC (fresadora de control numérico) de la carátula frontal: