Plato giratorio con motor paso a paso

Construcción de un plato giratorio, con un motor paso a paso unipolar de 5 hilos 28BYJ-48. Los platos giratorios se utilizan desde hace mucho tiempo en los escaparates como expositores, sobretodo en tiendas de relojes y joyerías. En mi caso, lo voy a utilizar para grabar algunas escenas de montajes electrónicos. Este plato puede girar en ambos sentidos con gran precisión, y a una velocidad configurable a elegir entre uno de sus 6 preset. El controlador del motor está hecho con un microcontrolador Atmega328P (Arduino). Aprovechando la gran precisión de giro de los motores paso a paso, este plato giratorio se podría utilizar como temporizador cíclico, montando levas en el plato para accionar uno o varios pulsadores.

Motores Paso a Paso

Un motor paso a paso convierte los impulsos eléctricos que recibe en sus bobinas, en movimiento de rotación, y se considera como un motor de corriente continua sin escobillas.

Motor Unipolar de 5 hilos

Un motor paso a paso funciona con tensión continua, y puede ser de casi cualquier tamaño y par. Cuando se le aplica energía en alguno de sus bobinados, da un «paso» en lugar de girar constantemente. Cada paso provoca una rotación con un ángulo especificado por el fabricante del motor, ya que depende del número de polos del motor y su demultiplicación interna.

Un motor paso a paso se comporta como un conversor Digital-Analógico (D/A), convirtiendo los impulsos digitales de tensión que recibe en giros analógicos de gran precisión. Estos motores se utilizan en cualquier dispositivo electrónico que requiera mover objetos con gran precisión: impresoras convencionales y 3D, escáner, plotter, fresadoras CNC, grabadores láser, etc.

Stepper motor 28BYJ-48

Model : 28BYJ-48
Rated voltage : 5VDC
Number of Phase : 4
Speed Variation Ratio : 1/64
Stepper Motor 5V 4-Phase 5-Wire & ULN2003 Driver Board
Stride Angle : 5.625° /64
Frequency : 100Hz
DC resistance : 50Ω±7% (25℃)
Idle In-traction Frequency : > 600Hz
Idle Out-traction Frequency : > 1000Hz
In-traction Torque >34.3mN.m (120Hz)
Self-positioning Torque >34.3mN.m
Friction torque : 600-1200 gf.cm
Pull in torque : 300 gf.cm
Insulated resistance >10MΩ (500V)
Insulated electricity power :600VAC/1mA/1s
Insulation grade :A
Rise in Temperature <40K (120Hz)
Noise <35dB (120Hz, No load, 10cm)

Control del plato giratorio

Para controlar los ángulos de giro y velocidad de un motor paso a paso, es necesario saber como mínimo el número de pasos por vuelta del motor, su tensión de alimentación y la frecuencia máxima de funcionamiento.

El motor 28BYJ-48 hace un giro completo cada 64 pasos, pero incluye una reducción de 1/64 . Como resultado tenemos 64×64 = 4096 pasos por vuelta. Como el motor se acopla al plato mediante un piñón y una corona de relación 1/7, los cálculos de giro los tendremos que calcular en función de 4096×7 = 28972 pasos por vuelta.

Al tratarse de un motor de 4 fases, es posible controlarlo en ciclos de 4 pasos. Aunque se pierda un poco de PAR, los fabricantes aconsejan hacer funcionar el motor en modo “Half Step Drive” (medio paso), haciendo los saltos menos bruscos y reduciendo su consumo.

Secuencia de 8 pasos, para mover el motor 28BYJ-48 en Half Step Drive:

Secuencia de 8 pasos, para alimentar el motor paso a paso unipolar de 5 hilos 28BYJ-48

Construcción del Plato giratorio

Para la construcción de este plato giratorio he utilizado el motor paso a paso unipolar de 5 hilos 28BYJ-4.  Este motor junto con su driver de control, se puede conseguir por Internet por menos de 5 Euros. Al tratarse de un motor unipolar, no es necesario utilizar un driver del tipo Puente H, necesario para controlar los motores bipolares de 4 hilos.

Driver para motor paso a paso unipolar de 5 hilos

El driver de este motor es muy sencillo, sólo necesita 4 transistores en montaje Open-Collector para suministrar la corriente necesaria a las bobinas del motor. El driver que se incluye con este motor utiliza 4 entradas-salidas del circuito integrado ULN2003, de las 7 que incluye el chip. También lleva 4 indicadores LED para señalizar cuando se está alimentado cada una de las 4 bobinas del motor.

El controlador del motor lo he montado aprovechando el PCB del Shield del programador ISP de Arduino UNO que hice hace unos años.

Shield programador ATmega/ATtiny (ARDUINO)

Sólo es necesario cortar una pista del circuito impreso, y unir 11 pines del ATmega328P con su puntos de conexión correspondiente, como si se tratase de un Arduino UNO.

Esquema del plato giratorio con Arduino

En el esquema de montaje se muestran todos los puentes que hay que hacer en color rojo, así como los componentes que hay que montar, resaltados en color verde. Para alimentar todo el circuito, he utilizado una pequeña fuente conmutada de 230VAC-5VDC de 500 mA.

Acceso a descargas

Firmware para cargar en Atmega328P:

Plato_28BYJ-48.rar

Caja y engranajes 3D – Thingiverse:

Turntable, with a 28BYJ-48 5-wire unipolar stepper motor

¿Necesitas fabricar un PCB?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

Logo: PCBWay

Ahora también puedes encargar trabajos 3D, mecanizados con CNC y fabricación de cajas metálicas o de plástico inyectado.

https://www.pcbway.es/

Control-Medidor de Ozono en el aire, con Arduino

Construcción de un medidor de ozono en el aire con Arduino. Al mismo tiempo, este medidor se encargará de controlar el encendido y apagado del equipo generador de ozono, manteniendo así un nivel de concentración prefijado, dentro de un compartimento destinado a la desinfección de objetos. El sensor de gas ozono tipo MQ-131, de baja concentración, permite medir concentraciones de ozono en el aire comprendidas entre 0,01 y 1 ppm.

Medidor de la concentración de ozono en el aire

 

Concentración de Ozono en el aire

El ozono es muy bueno para desinfectar locales, ropa de trabajo, mascarillas y también alimentos. Debido a la situación actual, se están vendiendo generadores de ozono de todo tipo, y muchos de ellos orientados al uso doméstico.  El ozono, al igual que cualquier producto desinfectante, hay que utilizarlo con precaución. Es importante destacar que el ozono es un gas tóxico para los pulmones. Los generadores de ozono hay que utilizarlos en sitios cerrados y sin gente dentro.

Concentración máxima de ozono en el aire durante 8 horas

El problema que tiene el ozono frente a otros productos desinfectantes, es que es muy difícil de dosificar. El ozono es un gas muy inestable y no se puede envasar, debido a que las moléculas del ozono se recombinan muy rápidamente, convirtiéndose de nuevo en oxígeno. Cuando se utiliza el ozono como desinfectante, lo más importante es calcular el tiempo que debería estar funcionando el equipo generador. Ese tiempo dependerá del valor de concentración de ozono que necesitemos alcanzar (ppm), y varía en función de los metros cúbicos desinfectar (volumen) y de la potencia del generador.

Desinfectantes

Teniendo en cuenta que la producción de ozono de un generador varía en función de la calidad del aire (temperatura, humedad…) y además depende del rendimiento de su elemento reactor, el cual se envejece y no es muy lineal; la única manera de calcular ese tiempo sería mediante un equipo de medida, que a su vez controlara el encendido y apagado del equipo generador de ozono. Este interruptor funcionaría como el termostato de una calefacción, conectando y desconectando el generador en función de la concentración de ozono en el aire que se quisiera alcanzar.

Sensores de gas MQ

MQ  es una familia de sensores de gas, orientados a medir diferentes compuestos químicos dependiendo del modelo de sensor que se utilice. Los sensores MQ están compuestos por un elemento semiconductor (óxidos metálicos) sensible a cada tipo de gas, el cuál varía su resistencia en función de la concentración de gas en el aire.

Sensores de gas de la serie MQ

Estabilidad y Precisión de los sensores MQ

Para obtener una mayor estabilidad, los sensores MQ incorporan una resistencia calefactora, lo cual supone un consumo extra y una falta de precisión en las medidas que se realicen al poco tiempo de alimentar el sensor. Otro punto importante a considerar, es que cada modelo de sensor MQ tienen alta sensibilidad a un gas específico, pero en menor medida también reaccionan o otros gases, y esto provoca una mayor imprecisión. Por ejemplo, el sensor de ozono MQ-131 tiene una alta sensibilidad al ozono, pero también es sensible a otros gases oxidantes como el cloro y el dióxido de nitrógeno.

Módulo sensor de gas ozono MQ-131

Para obtener una precisión mínima, es necesario calibrar cada sensor, y almacenar su valor de resistencia sin presencia de gas, dentro del firmware encargado de calcular las medidas. La precisión de estos sensores depende muchos factores internos y externos difíciles de controlar (temperatura de trabajo, humedad, envejecimiento del sensor), y nunca deberían utilizarse como elemento de control en lugares críticos.

Detalles del módulo sensor de gas ozono MQ-131

Con la ayuda de un controlador programado, por ejemplo con Arduino, los sensores MQ los podemos utilizar para medir la concentración de un gas determinado, dependiendo del modelo de sensor que elijamos.  Los sensores de gas MQ pueden comprarse sueltos, pero es muy común conseguirlos ya montados en un pequeño PCB, en el cuál se incluye un circuito comparador que nos proporciona una salida digital extra, además de la propia salida analógica del sensor. A través de la resistencia variable (trimmer) que incluyen estos circuitos , podríamos prefijar un umbral máximo de gas, y disparar una alarma.

Esquema genérico, para utilizar con los sensores de tipo MQ

Medidor-Controlador de Ozono

En el caso del sensor MQ-131, muy sensible al gas Ozono, mediante esta salida digital podríamos controlar el encendido y apagado de un generador de ozono. Esto sería muy útil para mantener un nivel alto de ozono dentro de un compartimento cerrado (cabina, caja, etc.) con el fin de desinfectar objetos personales, utensilios de trabajo, ropa, etc.

Esquema del Medidor-Controlador de ozono.

Descargar el firmware

El firmware que necesitas para programar el ATMEGA328P (Arduino UNO),  los puedes descargar desde el siguiente enlace:  MQ-131_JR.rar

Cubierta del sensor, impresa en 3D

La cubierta de protección del sensor gas la he fabricado con PLA. El PCB del sensor se fija a esta cubierta sin tornillos,  calentando con un soldador los 4 resaltes de PLA que sobresalen por los orificios del PCB, una vez encajado en la cubierta.

Carcasa 3D, para el sensor de gas MQ

Los archivos que necesitas para imprimir esta cubierta de protección, los puedes descargar desde el siguiente enlace: Cover for MQ gas sensor

¿Necesitas fabricar un PCB?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos, pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay. Hasta un 30% de descuento para PCBs especiales, con fabricación en 24 horas.

Logo: PCBWay
Ahora el servicio de montaje en PCBWay por tan solo 30$, con tiempo de entrega rápido: https://www.pcbway.es/

 

 

 

 

Frecuencímetro digital

Montaje y pruebas de funcionamiento de un frecuencímetro digital. Este frecuencímetro está construido a partir de un PIC16F628A, y puede medir frecuencias entre 1 Hz y 50 MHz. El frecuencímetro también incorpora en el PCB un pequeño oscilador, con un zócalo para insertar cristales de cuarzo y comprobar con precisión su frecuencia.

Frecuencímetro: PCB montado

Origen de este frecuencímetro

Este frecuencímetro se puede conseguir en KIT a través de Internet a un precio muy asequible. Existen muchas variantes de este frecuencímetro, en concreto el que he comprado yo, incluye en el mismo PCB un comprobador de cristales de cuarzo. No obstante, el corazón de este frecuencímetro es un PIC16F628A, y normalmente todos los modelos llevan cargado el firmware que desarrolló un radioaficionado de origen alemán.

Como me parece justo el destacar la autoría y origen de los diseños, a continuación os adjunto el link de acceso al frecuencímeto de Wolfgang «Wolf» Büscher, DL4YHF:

https://www.qsl.net/dl4yhf/freq_counter/freq_counter.html

Montaje del kit

El montaje de este kit es muy sencillo, a pesar la escasa información que se adjunta, y su pésima calidad de impresión. Siguiendo la serigrafía del PCB, se pueden localizar con facilidad el valor de todos los componentes.

Debido a la pésima calidad del esquema que se adjunta con el kit, he creado un esquema nuevo a partir del diseño de Wolfgang. 

Esquema: Frecuencímetro digital

Observar que en este esquema ya está modificado el circuito de entrada del frecuencímetro. He añadido un pequeño amplificador de RF, con el fin de proteger la entrada del PIC, y permitir la medida de señales de baja amplitud.

Frecuencímetro: consumo en funcionamiento

Con esta modificación el consumo aumenta alrededor de 6 mA, pero así es posible medir señales a partir de 100 mVpp, en lugar de los 2..3 voltios que se necesitarían sin el amplificador. Además, así se evita que se pueda quemar la entrada del PIC, debido a un pico de tensión inesperado. Por ora parte,  el amplificador de entrada incluye un varistor, el cual limitará la tensión de entrada a 30V, evitando así también la llegada de algún pico de tensión hacia el transistor (amplificador de entrada).

¿Necesitas fabricar un circuito impreso?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

Logo: PCBWay

https://www.pcbway.es/

 

 

Interruptor inteligente

Diseño y construcción de un interruptor inteligente, capaz de cortar la alimentación de todos los dispositivos conectados en una regleta de enchufes. El circuito detecta el consumo en una toma de red (Master), y desconecta todo (incluido el propio controlador) cuando se apaga el dispositivo conectado a la toma ‘Master’. Así en reposo (Standby), el consumo total de todo el conjunto será nulo.

Regletas de RED inteligentes

Buscando un poco por Internet, podemos encontrar regletas de alimentación inteligentes. La mayoría de ellas nos permiten conectar y desconectar la alimentación de todos los enchufes desde un dispositivo móvil, programar la hora de encendido y apagado, incluso medir el consumo y  calcular su coste.

Regletas inteligentes en Internet

El uso de regletas inteligentes podría suponer un gran ahorro energético, pero hay que tener en cuenta que estas regletas de por sí ya incorporan un consumo extra… y su circuito de control consume energía las 24 horas del día.

Interruptor inteligente

La idea de este montaje, es la de conseguir el apagado automático de una serie de dispositivos, al detectar el apagado del equipo principal (Master). Por ejemplo, si conectamos a la toma principal  de este circuito la CPU de nuestro PC,  y el resto de dispositivos (monitor, impresora, escáner, etc)  a la toma auxiliar; al desconectar la CPU se desconectaría la alimentación de todo el conjunto… incluso la del propio circuito de control. De esta manera no quedaría ningún equipo consumiendo en modo ‘Standby’, y el consumo total sería nulo.

Interruptor inteligente montado

A continuación se muestra el esquema del circuito de control, encargado de cortar la alimentación en todas las tomas de red, cuando detecte un caída de consumo en la toma ‘Master’.

Esquema: Interruptor inteligente

Las tensiones que obtendremos como muestra en la entrada del ATtiny cambiarán dependiendo de la inductancia y características del transformador que utilicemos (filtro EMI), además del tipo de carga que conectemos en la toma ‘Master’ (carga reactiva o lineal).

Principio de funcionamiento

El circuito está basado en la transferencia de tensión que aporta una de los dos  bobinas de un filtro EMI, al paso de la corriente de RED por el otro devanado.  Este montaje funciona como un transformador de corriente, entregando una tensión en el devanado secundario, proporcional a la corriente que circule por el primario. En este caso, la transferencia de tensión no es lineal con la potencia, pues dependerá del tipo de carga que conectemos en la toma ‘Master’. Si la carga se comporta como una resistencia pura,  la transferencia de tensión será menor que si tuviera una componente reactiva.

Medidas de tensión con diferentes cargas

El circuito detector de umbral está construido con Arduino, utilizando un ATtiny 85. Este pequeño micro controlador tiene sólo 8 pines y puede funcionar con un oscilador interno, lo que permite hacer uso de casi todos sus terminales.

Calibración y ajuste de los umbrales

En este montaje se han dedicado dos pines del ATtiny para poder configurar hasta 4 umbrales distintos de funcionamiento. Así podemos elegir el umbral de detección más adecuado al equipo que vayamos a conectar en la toma ‘Master’. Como es lógico suponer, los 4 umbrales los podremos calibrar y modificar con Arduino, antes de programar el ATtiny.

Ajuste y calibrado de los umbrales

Para facilitar el ajuste de los umbrales y la calibración de la escala, podemos cargar el código ‘Regleta_TEST.ino’ que se adjunta en la descarga, y utilizar la placa de desarrollo Arduino UNO. Para realizar este ajuste, colocamos un potenciómetro de 10K entre el positivo y negativo de la fuente de 5V, y conectamos el cursor del potenciómetro con la entrada A2 de Arduino UNO. El proceso a seguir para la calibración de la escala y fijación de los umbrales. se explica en el video final.

Los archivos que necesitas para programar el Arduino UNO y el ATtiny, lo puedes descargar de forma gratuita desde el siguiente enlace:

Interruptor_I.rar

¿Dónde fabricar el PCB?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos, pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

Logo: PCBWay

https://www.pcbway.es/

PCB: Interruptor inteligente

 

Acceso a los GERBER de este PCB

PCB from PCBWay

Link of my shared project

Descarga del ficheros 3D:

Intelligent switch

Diseño 3D

 

 

 

 

 

 

 

SORTEO: 3 cupones de 50$ y 100 de 10$

Sorteo de 3 cupones de descuento de 50$, para fabricar circuitos impresos en la empresa PCBWay.

Reparto de los 100 cupones de descuento de 10$, para fabricar circuitos impresos en la empresa PCBWay.

Fabricante de prototipos PCB y empresa colaboradora:

Logo: PCBWay