Resistencias de carga para electrónica

Funcionamiento y usos de las cargas electrónicas, destinadas a comprobar los sistemas de alimentación cuando entregan su máxima potencia, ya sean conectados a la red eléctrica como a baterías. Las resistencias de carga permiten comprobar la corriente máxima que soporta un cargador de baterías, medir el rizado y ruido de una fuente de alimentación a plena carga, comprobar la capacidad real de baterías y pilas, etc. Se realizan pruebas y medidas con tres resistencias de carga diferentes, una resistencia de carga convencional, otra electrónica de construcción casera… y la última también electrónica, de 150W controlada por microprocesador.

Diferentes usos de las resistencias de carga

En un taller de electrónica, ya sea de tipo profesional o aficionado, son muy útiles las resistencias de carga. Las resistencias de carga permiten comprobar y ajustar equipos de RF, sin tener que montar una antena y radiar frecuencias no permitidas.

Cargas de RF

Pero no sólo son útiles este tipo de resistencias de carga, en este caso me voy a centrar en las resistencias de carga que se utilizan para simular consumos en sistemas de alimentación y comprobar su correcto funcionamiento, o su autonomía si se trata de un sistema de alimentación con baterías.

Cargas electrónicas de corriente constante

Cuando la resistencia de carga se va a utiliza para comprobar sistemas de alimentación, ya es posible incluir circuitos de control  por ancho de impulso (PWM) o analógicos, con el fin de mantener una corriente de descarga constante en baterías, sin importar que se vaya reduciendo su tensión con el tiempo.

Curvas de descarga de baterías Li-ion

Así  se podrá medir la capacidad real de una batería o pila, fijando un valor fijo de corriente de descarga, con tan sólo cronometrar el tiempo que ha tardado en alcanzar su tensión mínima (batería descargada). La capacidad de una batería es un parámetro muy importante, y los fabricantes  rotulan su valor en Amperios/hora (Ah) o miliamperios/hora (mAh), dependiendo de la capacidad y tipo de batería.

Hace tiempo medí la capacidad real de una serie de baterías nuevas, con el fin de comprobar la tolerancia que existía con el valor que declaraba el fabricante. Ya suponía que siendo unas baterías de origen chino, su capacidad real podría ser mucho más baja del valor que indicaban en la cubierta. Lo que no me imaginaba es que esa diferencia pudiera ser tan grande…

Medidas de la capacidad real de algunas baterías

Para hacer estas medidas construí una carga electrónica de corriente constante, que permite funcionar con tensiones que varíen entre 1 y 60 voltios, manteniendo la corriente constante al valor que se fije mediante sus dos potenciómetros de ajuste. En el diseño, la corriente máxima la limité a 3A, porque la disipación que le puse no era muy buena, a pesar de que el transistor que monté podría soportar hasta 15 amperios.

Carga de corriente constante, con valores máximos de 60V y 3A

Si estás interesado en conocer el funcionamiento de una carga electrónica de corriente constante, o quieres conocer más detalles para fabricarte una con muy pocos componentes, lee el siguiente artículo:

Construye una carga electrónica

Carga electrónica de 150W

Actualmente se pueden encontrar a la venta multitud de cargas electrónicas de corriente constante, a un precio muy asequible (<20€). En realidad no merece la pena comprar los componentes para montar una carga electrónica, cuando se pueden conseguir ya montadas a un precio inferior al que habría que pagar si se compran los componentes sueltos. Bajo mi punto de vista, el único interés que podría tener montar una carga electrónica componente a componente, sería por afición o con fines educativos. Como norma general, cualquier dispositivo electrónico que se pueda comprar en una tienda, siempre saldrá más barato comprarlo que fabricar uno igual… y eso dejando aparte el acabado final.

Carga electrónica de corriente constante, hasta 150W

Características

  • Tensión de alimentación: 6 ~ 12VDC
  • Medida de tensión: 0 ~ 150VDC   precisión: 0,05 V
  • Medida de corriente: 0 ~ 10A precisión: 0,05A
  • Medida de potencia:  0 ~ 150W
  • Medida de energía : 0 ~ 99999,9Wh precisión: 0,01Wh
  • Medida de potencia: 0 ~ 2999,9 W precisión: 0,01 W
  • Medida de Impedancia: 0 ~ 999,9Ω precisión: 0,01Ω
  • Rango de temperatura: 0 ~ 99 °C precisión: 1 ℃
  • Ajuste de tensión máxima y mínima con alarma: 0 ~ 150VDC
  • Ajuste de corriente máxima con alarma: 0 ~ 10A
  • Ajuste de potencia máxima con alarma:  0 ~ 150W
  • Medida de capacidad: 0 ~ 999,999Ah precisión: 0,001Ah
  • Tiempo máximo: 999:59:59 precisión: 1s
  • Potencia de refrigeración del ventilador: <150W
  • Temperatura para el arranque del ventilador: > 40 ℃

Configuración y funcionamiento

El manual de funcionamiento que se incluye en esta carga de 150W, se podría catalogar como suficiente, pero es mejorable. Después de practicar un rato con los menús y configuraciones, llegas a acostumbrarte, pero creo que el fabricante debería haber puesto como mínimo dos pulsadores en lugar de uno. Con un sólo pulsador para todo, es muy fácil confundirse y hacer justamente lo que no quieres. (Modo irónico: ON) Es posible que el diseñador de esta carga fuera en su juventud telegrafista, y está muy acostumbrado a codificar letras a base de pulsaciones (Modo irónico: OFF).

Con el fin de que no se me olvide el modo de acceder a todos los menús, hice un diagrama a modo resumen en una hoja, y la tengo guardada junto con la carga. Así será mucho más fácil cuando la tenga que utilizar dentro de un tiempo, y ya no me acuerde de nada.

Diagrama de funcionamiento y configuración, de la carga electrónica de 150W

Marco de sujeción para el LCD

Un fallo de diseño de esta carga, es la falta de sujeción del display LCD dentro de su alojamiento. Al girar la carga se desprende el display y se queda colgando de la cinta flexible de conexiones. Para solucionar este problema he fabricado un marco en PLA, con la impresora 3D, para sujetar el display en su soporte. Este marco entra a presión, evitando que se mueva el display de su alojamiento, protegiendo al mismo tiempo su cinta de conexión con el PCB.

Si quieres fabricar esta marco de protección con una impresora 3D, puedes descargar el fichero .STL desde el siguiente link:

Clamping frame for the LCD of the 150W electronic load resistor

¿Necesitas fabricar un PCB?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos, pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay. Hasta un 30% de descuento para PCBs especiales, con fabricación en 24 horas.

Logo: PCBWay

Ahora el servicio de montaje en PCBWay por tan solo 30$, con tiempo de entrega rápido: https://www.pcbway.es/

 

Medir la resistencia interna de una Batería/Pila

Comprobación del estado de una pila/batería, midiendo su resistencia interna. La batería se conecta a una carga electrónica y se mide la diferencia de tensión en vacío y con carga, a una corriente determinada.

Resistencia interna

Resistencia interna

La resistencia interna de una pila/batería produce unas pérdidas, provocadas por la caída de tensión (interna) al paso de la corriente, reduciendo su tensión de salida útil y llegando a ser inservible en algunos casos. El envejecimiento de una pila/batería está relacionado con el aumento de su resistencia interna. De manera que la calidad de una pila o batería nueva, también se podría comprobar midiendo su resistencia interna. Si realizamos esta medida con baterías de características similares y diferentes fabricantes, podríamos conocer cuál de ellas es la mejor. En caso de que tengamos una serie de baterías usadas y necesitáramos reutilizar una, midiendo la resistencia interna de cada una de ellas también podríamos elegir la que estuviera en mejor estado.

Tensión en vacío

Como el valor de la resistencia interna de una pila/batería no lo podemos medir directamente en Ohmios, es necesario aplicar un sistema de medida indirecto. Lo más fácil es medir la tensión en los terminales de la batería, con la batería desconectada (en vacío) y tomarla como referencia.

Tensión con carga

A continuación aplicamos una carga adecuada a la batería que tengamos que comprobar, y medimos la corriente que circula por la carga y el nuevo valor de tensión que tenemos  en los terminales de la batería. Si la tensión que medimos con la batería cargada fuera la mismo que obtuvimos en la primera medida (sin carga), la batería sería ideal (Ri=0). Teniendo estos dos valores de tensión y el de la corriente, sólo tenemos que aplicar la Ley de Ohm para conocer el valor de la resistencia interna (ver imagen anterior)

Capacidad real de una batería con ARDUINO

Medir la capacidad real de una batería con ARDUINO. Para que este sistema pueda funcionar de forma autónoma (sin PC), se utiliza el módulo ‘LCD Keypad Shield’ para mostrar la información en su display. Midiendo la capacidad real de una batería nueva, podremos saber la fiabilidad del fabricante y además calcular el tiempo de funcionamiento que tendrá cualquier dispositivo que utilicemos con dicha batería.

LCD Keypad Shield - Esquema
LCD Keypad Shield – Esquema

El módulo ‘LCD Keypad Shield’ está diseñado para poder insertarlo encima del módulo ARDUINO, sin la necesidad de realizar ninguna conexión adicional. Como podemos ver en el esquema anterior, este módulo LCD  transfiere las entradas/salidas de ARDUINO que no utiliza (incluso el conector ICSP y el pulsador RESET) hacia su circuito impreso, permitiendo la inserción de conectores para poder utilizar estas conexiones sin tener que soldar cables en el módulo ARDUINO. LCD Keypad Shield dispone de 6 pulsadores, el pulsador Reset y 5 más para realizar maniobras, así como un diodo Led para indicar cuando está alimentada la placa. Los 5 pulsadores de maniobras están conectados a una red de resistencias alimentadas con 5V, y la salida va conectada a la entrada analógica ‘0’ de ARDUINO. Dependiendo del pulsador que se accione, aparecerá una tensión diferente en esta entrada analógica. Si leemos el valor desde ARDUINO utilizando la sentencia: analogRead(0), obtendremos un valor diferente con cada pulsación. Añadiendo una simple rutina en el código, podremos detectar la posición de cualquier botón. En la imagen anterior se muestran los valores que he medido en mi ARDUINO -tus medidas pueden variar ligeramente-, así como la rutina que podrías utilizar para detectar la pulsación de los botones.

LCD Keypad Shield & ARDUINO
LCD Keypad Shield & ARDUINO

El módulo LCD utiliza su propia tabla de caracteres (ROM), pero también dispone de 8 caracteres programables (RAM). Los caracteres programables los podemos utilizar para generar cualquier carácter o símbolo que necesitemos mostrar en la pantalla y no se encuentre en la tabla de caracteres (ROM) del display. En la imagen anterior se muestran los detalles para programar estos caracteres, así como las sentencias que se deben utilizar con la librería: LiquidCrystal.h en ARDUINO.

Sistema de medida: Capacidad real de una batería
Sistema de medida: Capacidad real de una batería

Para medir la autonomía de la batería, vamos a utilizar ARDUINO como cronómetro de precisión. La conexión/desconexión del cronómetro se realiza de forma automática, utilizando una entrada digital como control. El sistema de detección del estado de la batería será el incluido dentro del módulo TP4056 (módulo de carga para 3,7V con protección). El módulo TP4056  además controlar la carga de la batería, mostrando su estado mediante dos indicadores LED, desconecta la batería de cualquier dispositivo que conectemos a su salida cuando la batería llega a umbral mínimo de tensión (<2,5V).  Entre la salida de tensión del módulo TP4056 y ARDUINO conectaremos un pequeño interface, consistente en un transistor NPN, 2 resistencias y un condensador (ver esquema). Para facilitar el cálculo y obtener precisión en la medida, utilizaremos una carga electrónica para conseguir que la corriente permanezca constante, independientemente de la tensión que tenga la batería.

El cronómetro incrementará el contador de tiempo, siempre que tengamos tensión a la salida del módulo TP5056. Cuando el cronómetro se detenga podremos calcular la capacidad real de la batería, convirtiendo el valor de tiempo medido en horas y multiplicándolo por la corriente que hayamos seleccionado en la carga (la corriente en amperios para Ah). Es importante destacar que al final del ciclo de descarga, cuando el cronómetro se detenga, la carga se desconectará de la batería… y esta empezará a recuperarse más rápido o despacio dependiendo de la carga que le hayamos desconectado. Al subir de nuevo la tensión de la batería, llegará un momento en el que se supere el umbral de reposición del módulo TP4056, se conectará de nuevo y el cronómetro seguirá incrementando el tiempo. Cuando esto suceda, se producirán ciclos intermitentes de cadencia cada vez más larga, y al final se detendrá por completo. Si queremos conocer la capacidad de la batería con bajo consumo, podemos esperar hasta el final. Pero si necesitamos comprobar la autonomía con el consumo que hemos seleccionado en la carga (porque es el consumo de nuestro dispositivo), tendremos que hacer el cálculo cuando se desconecte el cronómetro por primera vez.

En la siguiente imagen se muestran las medidas comparativas que he realizado con dos baterías de origen chino, rotuladas con una capacidad de 9800 mAh. Las dos baterías son nuevas y pertenecen al mismo lote. Las medidas las he realizado con una corriente constante de 500 mA, y el tiempo que se muestra es el de la primera desconexión. Al medir la capacidad de dos baterías iguales, nos aseguramos que la batería que hemos utilizado no está defectuosa (ambas medidas son parecidas). Al realizar dos medidas utilizando la misma batería, comprobamos la precisión del sistema de medida que estamos utilizando (valores casi idénticos).

Resumen de las medidas
Resumen de las medidas

En la última línea se muestra la capacidad que he medido en otra batería de tipo TR 14500, de una ‘supuesta’ capacidad de 1200 mAh.

Medidas con umbral de tensión ajustable

Si queremos medir la capacidad de otros tipos de batería, con tensiones diferentes, o simplemente necesitamos comprobar el tiempo de funcionamiento de cualquier batería hasta llegar a una tensión umbral determinada, podríamos montar el circuito que se muestra a continuación.

Sistema de medida opcional, con umbral de tensión ajustable
Sistema de medida opcional, con umbral de tensión ajustable

Como podemos ver, sólo tendremos que sustituir el módulo de carga TP4056 por el circuito de control que se muestra en la imagen. Mediante el potenciómetro de ajuste (22K), fijaremos el umbral mínimo de tensión a la que se debe desconectar de la carga electrónica,  y detener la cuenta del tiempo (cronómetro).

Descargar el código de ARDUINO : Crono_Battery

Construye una carga electrónica

Construcción de una carga electrónica, muy útil para comprobar el estado de carga de pilas-baterías, así como el correcto funcionamiento de cargadores y fuentes de alimentación. Los amplificadores operacionales, teoría y sus diferentes modos de funcionamiento: comparador, amplificador, filtro, oscilador, buffer. La carga electrónica se alimenta con una fuente de alimentación estabilizada de 5 VDC, pudiendo utilizar un cargador convencional de tipo USB. Esta carga electrónica incluye un voltímetro y un amperímetro. Con el amperímetro comprobaremos la corriente de carga, a la vez que medimos la tensión que está entregando el dispositivo bajo prueba.

Esquema: Carga electrónica
Esquema: Carga electrónica

Los primeros circuitos operacionales se comenzaron a fabricar en la década de los ‘60, por la empresa Fairchild. Se utilizaban estos circuitos para construir unidades encargadas de sumar, restar, dividir, derivar, integrar, etc. De ahí viene el origen de su nombre: Amplificador Operacional.

El amplificador operacional consta de dos entradas V1 V2 y una sola salida Vout. En la salida se obtiene la diferencia entre las dos entradas, multiplicada por un factor de ganancia G.  Un amplificador operacional ideal tiene una ganancia G infinita, una impedancia de entrada infinita, un ancho de banda (rangos de frecuencias a los cuales puede operar) también infinito, una impedancia de salida igual a cero, y ningún ruido. Como consecuencia, si tiene una impedancia de entrada infinita, sus corrientes de entrada serán nulas. En la práctica, un amplificador operacional tiene un ancho de banda del orden de MHz, con impedancias de entrada de algunos MOhm y una ganancia típica de 100.000. Aún así, con una diferencia de tensión de 50uV en sus entradas, se pueden obtener 5 voltios en la salida.

Esquema por bloques de un amplificador operacional
Esquema por bloques de un amplificador operacional

Todos los amplificadores operacionales comparten una misma estructura interna:

  • Amplificador diferencial: es la etapa de entrada que proporciona una baja amplificación del ruido y alta impedancia de entrada.
  • Amplificador de tensión: proporciona una ganancia de tensión.
  • Amplificador de salida: proporciona la capacidad de suministrar la corriente necesaria, con una baja impedancia de salida, y normalmente protegida frente a cortocircuitos.
Ganancia de los amplificadores operacionales
Ganancia de los amplificadores operacionales

OPERACIONAL COMO AMPLIFICADOR

En circuitos con ganancias superiores a 100.000, es muy fácil que la tensión de salida (teórica) llegara a superar a la tensión de alimentación. Llegado a este punto, se dice que el amplificador está saturado.

Cuando la tensión aplicada a la entrada V+ comienza a subir, la tensión en la salida Vout también sube, ya que es función de la diferencia de tensión entre sus entradas. Si conectamos una realimentación (R) entre la salida y V, la tensión en la entrada V también subirá, de manera que la diferencia de tensión entre las dos entradas se reduce y disminuye la tensión de salida (ganancia). Así es como podemos definir y limitar la ganancia de un amplificador operacional.

Filtro y oscilador, con amplificador operacional
Filtro y oscilador, con amplificador operacional

OPERACIONAL COMO COMPARADOR

Un amplificador operacional se puede utilizar como comparador. Esta característica hace que un amplificador operacional sea útil como elemento para adaptar niveles lógicos, o pudiendo generar la señal de error de un comparador de fases en un circuito PLL.

Comparador de fases con operacional
Comparador de fases con operacional

OPERACIONAL COMO BUFFER-SEGUIDOR

Operacional seguidor
Operacional seguidor

Si conectamos un amplificador operacional de la manera que nos muestra la figura, obtenemos lo que se conoce como circuito seguidor o buffer. Con esta configuración se eliminan los efectos de cargas importantes en salidas y se adaptan las impedancias, al conectar un dispositivo con una gran impedancia a otro con una impedancia pequeña o viceversa. En este caso, la tensión de salida será igual a la tensión de la entrada y la impedancia de entrada, teórica, sería infinita.