Monitor FM-RDS v2

Construcción de un pequeño receptor de radio de FM con RDS, orientado al personal de mantenimiento de los centros emisores de radio. La idea es construir un pequeño receptor de radio que decodifique la información más relevante del RDS, para poder controlar el correcto funcionamiento de la información que se está transmitiendo por la subportadora RDS de cada transmisor.

PCB: SI4703Este receptor es la segunda versión, utilizando el módulo SI4703, en lugar del RDA5807M que monté anteriormente:

Monitor FM-RDS

Módulo receptor FM-RDS: SI4703

El módulo SI4703, incluye un completo receptor de radio en FM: sintonizador, demodulador FM, decodificador estéreo, decodificador RDS y un pequeño amplificador de audio estéreo de 150mW.

Módulo receptor FM-RDS: SI4703

 

Este módulo se alimenta con una tensión continua de 3,3V, la configuración y el control se realiza mediante el bus I2C y la toma de antena está acoplada al hilo común de los auriculares. De esta forma, el cable de los auriculares hace de antena.

Receptor FM-RDS con: SI4703

Este sencillo receptor de radio está basado en el módulo SI4703, de bajo coste y altas prestaciones. Este módulo incluye en su interior todo el receptor de radio, incluso el decodificador Estéreo, el decodificador RDS y un pequeño amplificador de audio. Para controlar este módulo, he utilizado el micro-controlador ATMEGA328P (Arduino).

Esquema: Radio LCD con SI4703

Descarga de ficheros

El firmware y librerías que necesitas para programar el ATMEGA328P,  los puedes descargar desde el siguiente enlace: Radio_SI4703.rar

¿Necesitas fabricar un PCB?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos, pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay. Hasta un 30% de descuento para PCBs especiales, con fabricación en 24 horas.

Logo: PCBWay

https://www.pcbway.es/

Ahora el servicio de montaje en PCBWay por 30$, con envío GRATUITO mundial:
https://www.pcbway.es/quotesmt.aspx

Luz de dirección para bicicletas (v2)

Diseño y montaje de una barra LED, para indicar los cambios de dirección y disponer de iluminación trasera en bicicletas y patinetes. Todo el conjunto está montado en cajas hechas a medida, fabricadas en PLA con la ayuda de una impresora y un bolígrafo 3D.

Luz de dirección para bicicletas y patinetes

Barra LED en la bicicleta

Este montaje es una mejora del circuito que mostré anteriormente, basado en el microprocesador ATtiny.

Barra LED de señalización para bicicletas, con ATtiny

En este caso, se amplía el número de puntos LED desde 5 a 9, y se habilita la posibilidad de hacer funcionar las luces de dirección cuando está conectada la luz trasera. En el circuito anterior, debido al número tan limitado de conexiones que dispone el ATtiny  (8 pines), el circuito seleccionaba el modo de funcionamiento al arrancar, y era necesario desconectar la alimentación para cambiar su modo de funcionamiento.

Barra LED para bicicletas
Barra LED para bicicletas

Al utilizar el microprocesador ATmega 328P (28 pines), es posible dedicar 2 pines como entradas y detectar su modo de funcionamiento de forma permanente –sin tener que apagar y encender

Esquema: Barra LED (v2)

Como se puede ver en el esquema, el circuito está alimentado directamente desde la batería de 3,7V. Por este motivo es muy importante que elijamos los LED de alta luminosidad, pero siempre que su umbral de encendido sea bajo (menor de 3V).

Corriente LED

Firmware

El código de programación de esta barra LED,  se puede descargar desde el siguiente enlace: Luz trasera para bicicletas (v2)

Construcción y mecanizado

Como este montaje necesita muy pocos componentes electrónicos, he utilizado un PCB de tipo universal para montar el microprocesador, la batería y el módulo de carga TP4056. Los 9 LED los he montado directamente en una caja hecha a medida, fabricada en PLA con una impresora 3D.  El mecanizado y anclaje de todo el conjunto también está hecho con PLA.

Barra LED: Piezas 3D

Descargar ficheros .stl

LED steering light for bicycles and skateboards

Para la fijación de los LED con el frontal de la caja, he utilizado un bolígrafo 3D. Este bolígrafo 3D  me lo ha enviado GearBest para que muestre su funcionamiento.

Bolígrafo 3D Sunlu SL - 300

El bolígrafo 3D Sunlu SL – 300 utiliza el mismo tipo de filamento que las impresoras 3D, permitiendo así realizar reparaciones y mecanizados en las piezas utilizando el mismo material y color con el que están hechas.

Logo GearBest

A pesar de que el bolígrafo 3D Sunlu SL – 300 tiene un precio muy ajustado, GearBest me ha facilitado un código de descuento para poder conseguirlo todavía más barato. A continuación os dejo algunos link de acceso que me han parecido interesantes, y los códigos de descuento que me han facilitado.

Bolígrafo 3D Sunlu SL – 300
https://goo.gl/sNC6qQ
Cupón de descuento: RPM3DPEN

Accesorios y filamentos 3D
https://goo.gl/9KtaaJ
Cupón de descuento: CA%PS704
8% para compras superiores a 10$

Nuevos gadgets
https://goo.gl/5iCiVL

Web de GearBest en español
https://goo.gl/knpkvD

Fuses Arduino & Dado electrónico

Construcción de un dado electrónico con Arduino, modificando la configuración (fuses) para que funcione con su oscilador interno de 8 MHz. El dado electrónico se controla con un ATmega8A, alimentado con una batería de 3,7V y gobernado con el pulsador táctil capacitivo TTP223.

Cargador USB con sensor táctil

Programar con ARDUINO

Arduino es una plataforma de desarrollo con código abierto, y dispone de librerías para controlar infinidad de sensores y dispositivos sin apenas tener que escribir código. Esto facilita a cualquier aficionado a la electrónica, para que pueda realizar diseños a medida sin apenas tener conocimientos de programación.  Como consecuencia, Arduino ha tomado una gran popularidad, y actualmente se puede encontrar código abierto para realizar cualquier proyecto que se nos ocurra. A pesar de esto, Arduino es mucho más potente y versátil del uso que normalmente se le está dando, porque la potencia y versatilidad de los procesadores ATmega es muy superior al uso que normalmente se le está dando.

Esquema: Arduino UNO (v3)
Esquema: Arduino UNO (v3)

El IDE de Arduino facilita mucho la programación de un microprocesador ATmega, porque sólo es necesario seleccionar la placa de desarrollo con la que se está trabajando (UNO, Mega, Leonardo) y el IDE se encarga de grabar todos los parámetros de configuración y adaptar el código escrito cuando se realiza la compilación y se programa. En la mayoría de los casos esto es suficiente, pero es posible avanzar un poco más y sacar más provecho en los montajes, reduciendo el tamaño y costo de los componentes. El primer paso sería montar el micro controlador, una vez programado, en un PCB aparte y montar únicamente los periféricos que fueran necesarios. Pero si queremos realizar un proyecto de tipo profesional y venderlo, tendremos que modificar los parámetros de configuración para evitar que alguien pueda leer el código y realizar copias. La manera más fácil de cambiar la configuración de un ATmega, es utilizar AVRDUDE y ejecutar las órdenes a través de la ventana de comandos del PC.

https://j-rpm.com/2018/05/%E2%9C%85-arduino-a-fondo-no-te-lo-pierdas/

Dado electrónico con sensor táctil

Como la mejor forma de aprender algo es hacerlo, he contruido un dado electrónico con un ATmega8A, funcionando con su oscilador interno de 8MHz.

Dado con sensor táctil

Para programar el ATmega8A he utilizado una placa de desarrollo Arduino UNO, haciéndola funcionar como programador ISP. Como el código del programa está escrito en el IDE de Arduino, la compilación la hará para funcionar con un oscilador a cristal de 16 MHz. Lo primero que hay que tener en cuenta para que todo funcione correctamente, es reducir los retardos que hayamos definido en el programa a la mitad, porque cuando cambiemos la configuración del microprocesador para que funcione a 8 MHz, los valores de retardo que hayamos escrito durarán el doble.

Programando FUSES de ATmega8A

Una vez programado el microprocesador, sin desmontarlo del zócalo de programación, abriremos la ventana de comandos de Windows en el PC, y modificaremos la configuración (fuses) del ATmega8A / ATmega328P ejecutando AVRDUDE. Los argumentos que tenemos que añadir al ejecutar AVRDUDE, dependerán del tipo de microprocesador ATmega que estemos programando, y el puerto COM con el que se haya conectado el PC con Arduino.

Ejemplo: ATmega8A en COM3

avrdude -c arduino -p m8 -P COM3 -b 19200 -U lfuse:w:0xe4:m -U hfuse:w:0xd9:m

Ejemplo: ATmega328P en COM3

avrdude -c arduino -p m328p -P COM3 -b 19200 -U lfuse:w:0xe2:m -U hfuse:w:0xd9:m

Firmware

El código de programación de este dado electrónico,  se puede descargar desde el siguiente enlace: Dado electrónico con sensor táctil

 

ARDUINO a fondo… no te lo pierdas!!!

Configuración de un ATmega8A para hacerlo funcionar en un Arduino UNO. Si utilizas Arduino, te aconsejo que no te pierdas este artículo, porque encontrarás la información que necesitas para saber cómo funciona y esclarecer algunas dudas.

Programador ISP, con Arduino UNO

Contenido

Descripción comparativa entre el ATmega8A y el ATmega328P (capacidad de memoria, rango de tensiones, frecuencia máxima de trabajo). Configuración del IDE de Arduino (software de programación) y sus diferentes modos de funcionamiento. Convertir un Arduino UNO en programador ISP, cunstruyendo un ‘shield’ con zócalo de 28 pines, para programar cualquier ATmega compatible… y en el video final encontrarás las explicaciones, consejos y algunos trucos.

ATmega328P / ATmega8A

El  microprocesador ATmega8A tiene una arquitectura muy parecida al ATmega328P, ambos son AVR, aunque existen algunas diferencias en cuanto a sus prestaciones.

Esquema de bloques: ATmega8A

Esquema de bloques: ATmega328P

El ATmega8A podría utilizarse en la placa de desarrollo de Arduino UNO en sustitución del ATmega328P, siempre que se tengan en cuenta sus limitaciones.

Comparativa: ATmega328P / ATmega8A

Ambos circuitos integrados son compatibles en cuanto a su encapsulado conexiones y funcionamiento, de hecho el ATmega8A es uno de los primeros microprocesadores que se empezaron a utilizar con Arduino. Antes de montar un ATmega8A en la placa de desarrollo Arduino UNO, habría que programar su Boot Loader, y colocarlo en el lugar adecuado de su memoria Flash.

Boot Loader

El Boot Loader es el mecanismo de auto programación que permite cargar y descargar el código del programa desde el propio micro controlador. Esta característica permite que las actualizaciones del software sean controladas por el propio micro controlador, y esto lo hace  utilizando un pequeño programa de arranque, llamado Boot Loader…  y este ocupa una pequeña parte de la memoria Flash.

El Boot Loader o cargador de arranque, puede utilizar cualquier interfaz de datos y protocolo para leer y escribir el código del programa, tanto el de la memoria Flash como el de la memoria de programa.

Boot-Loader ARDUINO

El código del programa alojado en la sección del Boot Loader tiene la capacidad de escribir en toda la Flash, incluido el propio gestor de arranque de memoria. O dicho de otra manera, el Boot Loader tiene la capacidad de modificarse y borrarse a sí mismo.

El tamaño de la memoria del Boot Loader se puede configurar mediante el estado de unos bits denominados ‘fusibles’, y dispone de dos conjuntos separados, aparte de los bits Boot Lock (bits de bloqueo), los cuales permiten seleccionar los diferentes niveles de protección del micro procesador.

Fusibles en una memoria PROM

Secciones de la memoria FLASH

La memoria flash está organizada en dos secciones principales, la sección de la aplicación y la sección del cargador de arranque. El tamaño de las diferentes secciones está configurado por los fusibles BOOTSZ. Estas dos secciones pueden tener diferentes niveles de protección, ya que tienen diferentes conjuntos de bits de bloqueo.

Sección de la aplicación

La sección de la aplicación se encuentra dentro de la memoria Flash, y es la que se utiliza para almacenar el código principal del programa. Los  niveles de protección para la sección de la aplicación se configuran con los bits del Boot Lock. Dentro de la sección de la aplicación no se puede almacenar ningún código del cargador de arranque, ya que la instrucción SPM quedaría deshabilitada cuando se ejecuta esta sección.

BLS – Sección del cargador de arranque

Si bien la sección de la aplicación se utiliza para almacenar el código de principal del programa, el software del Boot Loader debe almacenarse dentro de la sección de arranque (BLS), ya que la instrucción SPM sólo puede iniciar una programación cuando se ejecuta desde el sector de arranque (BLS). La instrucción SPM puede acceder a todo el contenido de la memoria Flash, incluso al propio  sector de arranque (BLS). El nivel de protección para la sección Boot Loader puede seleccionarse mediante los bits de bloqueo del cargador de arranque.

Secciones de lectura sin escritura y sin lectura mientras se graba

Si la CPU admite la lectura mientras escribe (Read-While-Write) o si la CPU se detiene durante un software Boot Loader, la actualización depende de la dirección que se está programando. Además de las dos secciones, que son configurables mediante los fusibles BOOTSZ, la memoria Flash también se divide en dos secciones fijas: la sección leer mientras se escribe (RWW) y la sección sin lectura mientras se escribe (NRWW). El límite entre las secciones RWW y NRWW depende del modelo de micro controlador que se utilice.

La principal diferencia entre las dos secciones es:

  • Al borrar o escribir dentro de la sección RWW, la sección NRWW puede leerse durante la operación.
  • Al borrar o escribir dentro de la sección NRWW, la CPU se detiene hasta que finalice el proceso.

El software del usuario no puede leer ningún código que se encuentre dentro de la sección RWW durante la ejecución del sector de arranque.

El significado de leer mientras escribe (Read-While-Write) se refiere a cuando se borra o escribe en la memoria, es decir, cuando se está programando. Y esto no es posible hacerlo cuando se está ejecutando el gestor de arranque.

RWW – Sección de lectura mientras se escribe

Cuando se actualiza el programa con el Boot Loader y se está cargando código dentro de la sección RWW, es posible leer código del Flash, pero solo el código que se encuentra en la sección NRWW. Durante un proceso continuo de programación, el software debe garantizar que la sección RWW nunca se lea. Si a través de software se intentara leer dentro de la sección RWW durante la programación, el software podría terminar en un estado desconocido. Para evitar esto, las interrupciones tienen que deshabilitarse o moverse dentro de la sección del Boot Loader,  porque la sección Boot Loader siempre se encuentra en sección NRWW.

NRWW – Sección sin lectura mientras se escribe

El código ubicado en la sección NRWW se puede leer cuando el software Boot Loader está programando la sección RWW. Cuando el código Boot Loader programa la sección NRWW, la CPU se detiene hasta que termine la operación.

Bits de bloqueo del cargador de arranque (Boot Loader)

Cuando no se programa el Boot Loader, toda la capacidad de la memoria el Flash queda disponible para el programa. El cargador de arranque tiene dos conjuntos separados de bits de bloqueo, los cuales se pueden configurar de forma independiente y permiten diferentes niveles de protección.

Modos de protección contra una posible actualización realizada a través del micro procesador

  • Proteger la escritura en toda la memoria Flash
  • Proteger la escritura sólo en la sección del cargador de inicio (Boot Loader)
  • Proteger la escritura sólo en la sección Flash del programa
  • Permitir la actualización del software en toda la memoria Flash

Bits de bloqueo

Los bits de bloqueo o protección (Boot Lock) se pueden configurar en ambos modos de programación, tanto serie como paralelo, pero solo pueden borrarse cuando se borra toda la memoria. El bloqueo de escritura general  no controla la programación de la memoria flash mediante instrucción de auto programación (SPM). Del mismo modo, el bloqueo de lectura / escritura general no controla la lectura ni la escritura por LPM / SPM.

Si necesitas saber las posibles configuraciones de algún micro-controlador AVR, puedes consultar en esta Web: http://www.engbedded.com/fusecalc/

Desde aquí puedes realizar una configuración, calcular los valores en hexadecimal y copiar los argumentos de la cadena que le tendrías que añadir a la aplicación AVRDUDE, para programar los fusibles del micro-controlador.

SPM – Self-Programming Mode

El modo de auto programación (SPM) es una función que permite que un micro controlador programe su propia memoria flash. Usando el SPM, un micro controlador puede programarse con un nuevo código SPM. El modo de auto programación (SPM) se usa comúnmente con los códigos de cargador de arranque del micro controlador que ayudan a su programación en serie. El SPM está disponible solo para el código que se ejecuta en el Boot Loader (BLS) de la memoria flash. Con la ayuda de SPM, un código en el Boot Loader puede reescribir la memoria flash de la aplicación por completo o una parte de ella. Incluso puede reescribir su propio código en la sección BLS.

El modo de auto programación (SPM) es un factor clave del código Boot Loader, ya que su principal función es la de cargar el programa dentro de la sección destinada a la aplicación de la memoria flash. El Boot Loader puede recibir el código binario de otros chips de memoria, tarjetas SD o a través del puerto serie del micro controlador en caso de programación en serie. Es entonces con la ayuda de modo de auto programación (SPM)  que el micro controlador escribe el código binario en la sección flash de la aplicación.

Programador ISP con Arduino UNO

El IDE (Integrated Development Environment) de Arduino dispone de un código en la sección de los ejemplos: Archivo – Ejemplos – 11.ArduinoISP, que permite convertir la placa de desarrollo de Arduino en un programador ISP. Este código puede controlar el encendido de 3 diodos LED, para indicar su estado de funcionamiento durante la programación.

Esquema: Programador ISP

Funcionamiento del programador

Fluctúa la iluminación de uno de sus indicadores LED cuando el programador está disponible (LED azul), muestra otra indicación durante la  escritura (LED amarillo), y  también puede mostrar la indicación de error (LED rojo).

He añadido un cuarto LED al circuito, conectando un diodo LED en la línea SCK (LED verde). Esta señalización nos permite saber si un micro-controlador tiene cargado el Boot-Loader:

…al pulsar el botón RESET del programador, el LED verde (conectado a la línea SCK) debería parpadear durante un instante. 

Autoprogramación

La memoria del programa se actualiza  página por página (64 palabras en ATmega328P / 32 palabras ATmega8A). Antes de programar una página con los datos almacenado en el buffer de página temporal, la página debe borrarse. El buffer de página temporal se llena uno palabra a la vez usando SPM y el buffer se puede llenar antes del comando de borrado de página o entre una página borrada y una operación de escritura de página:

Alternativa 1. Llenar el buffer antes de borrar una página

  • Rellenar el buffer temporal de la página
  • Realizar un borrado de página
  • Realizar una escritura de página

Alternativa 2. Completar el buffer después de borrar la página

  • Realizar un borrado de página
  • Rellenar el buffer temporal de la página
  • Realizar una escritura de página

Analizador acústico con ARDUINO

Construcción de un analizador acústico con Arduino. La información se presenta de forma gráfica, en un display LCD de 16×2 caracteres. Como ecualizador gráfico se puede utilizar el circuito integrado MSGEQ7 o el MSGEQ5, dependiendo del número de bandas de audio que queramos mostrar. Este circuito se puede montar de forma independiente, previamente programando el ATMEGA328P con la placa de desarrollo de Arduino. Una vez programado, mediante la posición de un jumper se puede configurar para que muestre 5 o 7 bandas… montando previamente el circuito integrado ecualizador correspondiente.

Utilidad de un analizador acústico

Este analizador acústico no puede competir con un equipo profesional, pero podría ser muy útil para acondicionar la acústica de un salón de actos o sala de conciertos improvisada. Comprobando la respuesta en frecuencias y volumen de escucha en diferentes puntos, se podrían corregir los defectos reorientando los altavoces/bocinas, ecualizando la respuesta de los amplificadores, etc.   Por otra parte, como este analizador de audio es de bajo costo y no requiere de conocimientos especiales para montarlo, podría ser muy instructivo realizarlo como práctica en escuelas relacionadas con la formación en las ramas de electrónica y tecnología.

Ecualizador gráfico de 5/7 bandas

Este montaje está basado en el circuito integrado MSGEQ5 / MSEGQ7,  ecualizador gráfico de audio  de 5 y 7 bandas respectivamente.  Dentro de un pequeño encapsulado DIL de 8 pines, se encuentra todo lo necesario para obtener a su salida los valores de energía a diferentes frecuencias,  a partir de la señal de audio en su entrada (descomposición espectral).

MSGEQ5 - Analizador de 5 bandas

Como se puede ver en la imagen anterior,  el MSGEQ5  analiza los valores comprendidos entre 100 y 10.000 Hz. Este rango es más que suficiente para conocer la respuesta en frecuencias de cualquier entorno. Pero si queremos analizar con más detalle los extremos de la zona audible, graves más bajos y agudos más altos, sería mejor utilizar el MSGEQ7.

MSGEQ7 - Analizador de 7 bandas

Como se puede comprobar comparando los datos entre ambos componentes,  son compatibles tanto en conexiones como características técnicas. Lo único que cambia es la gestión de los datos,  pero el protocolo es el mismo.  Con el MSGEQ5 tendremos que tomar y asignar los valores leídos de 5 en 5, y con el  MSGEQ7 lo haremos en grupos de 7 (número de bandas). Aprovechando estas características, es muy fácil construir un circuito que permita trabajar con ambos componentes.

Analizador acústico de 5/7 bandas

 

Este montaje lo puedes hacer siguiendo el esquema anterior, o utilizando la placa de desarrollo de Arduino junto con el Shield LCD, desarrollado para Arduino UNO.

Escala gráfica

La escala de las barras gráficas que muestra el display no es logarítmica, como lo harían la mayoría de los analizadores de audio. Con el fin de obtener un efecto visual más pronunciado, la gráfica que muestra el display  traduce los valores de tensión en cada banda de forma lineal.

Escalado lineal de las medidas

Si prefieres cambiar la escala, sólo tienes que modificar los valores de la tabla (resaltadas en color  amarillo), editando el código antes de programar el microprocesador ATMEGA328P con Arduino.

Firmware

El código de programación de este analizador acústico,  se puede descargar desde el siguiente enlace: Analizador acústico