Construcción de una barra LED, para la señalización trasera en bicicletas, patinetes, etc. El circuito es muy simple y tiene muy pocos componentes electrónicos. Esta barra LED está construida con 5 LED de alta luminosidad, y está controlada con el pequeño procesador ATtiny (ATtiny 25/45/85 de 8 pines). La barra LED está alimentada con una batería de 3,7v (Li-Ion), pero también podría alimentarse con 2/3 pilas en serie de 1,5V.
Iluminación trasera en bicicletas
Por seguridad, cuando se circula con una bicicleta en zonas de baja luminosidad, es muy importante disponer de una buena iluminación trasera. Por otra parte, es imprescindible señalizar cualquier cambio de dirección cuando se circula con tráfico. Como el ancho de una bicicleta es muy reducido, sólo se necesita un punto de luz, y es muy fácil integrar las luces de cambio de dirección construyendo una barra LED.
Al montar las luces de cambio de dirección junto con la iluminación trasera, es aconsejable que la identificación del sentido de giro sea clara, sin crear confusión por estar integradas en una sola barra. La mejor manera de hacerlo es creando una animación con las luces, igual que lo hacen algunos modelos de coche de alta gama.
El circuito de control está basado en el pequeño micro controlador ATtiny. Debido al número limitado de pines de conexión (8 pines), el modo de funcionamiento se determina en la fase de arranque. Así es necesario desconectar la alimentación del circuito cada vez que necesitemos cambiar su modo de funcionamiento: Luz trasera / Luz de dirección. Utilizando otro modelo de micro controlador con más pines, como el ATmega, se podrían integrar ambas funciones y ampliar el número de LED en la barra.
Programar el ATtiny
La programación del ATtiny se puede hacer con Arduino, mediante el interface ISP.
Construcción de un sensor de proximidad con Arduino, mostrando la información de la distancia en un display gráfico OLED de 0,96″. El display OLED que he utilizado es el SSD1306 y debería tener una resolución de 128×64 pixel, pero como en China ahorran por todas partes, el display muestra los gráficos con una resolución de 128×32… ¿50% de ahorro/estafa?.
Este sensor de proximidad incluye un avisador acústico, y podría ser muy útil como complemento del bastón guía para personas invidentes. En este caso no sería imprescindible instalar el display, y la autonomía de la batería sería mayor.
Medir la distancia por ultrasonidos
Utilizar un sensor por ultrasonidos para medir distancias con precisión no es lo más adecuado, pero puede ser de gran ayuda si se utiliza para detectar obstáculos cercanos. Este sensor podría utilizarse como ayuda al aparcamiento de un coche, aunque hay otros sensores más adecuados (capacitivos, ópticos), porque las cápsulas piezoeléctricas no están pensadas para trabajar en la intemperie. El uso más adecuado para este sensor sería montarlo en un equipo portátil, y utilizarlo como avisador de obstáculos cercanos para personas invidentes (podría utilizarse como complemento del bastón guía).
El sensor de ultrasonidos HC-SR04 se puede comprar por menos de 1 dólar en Internet, y tiene un alcance aproximado de 4 metros y medio.
Para ver la medida de la distancia he utilizado un diminuto display gráfico de 128×64 pixel, el modelo SSD1306, con tecnología OLED.
Este circuito incluye un zumbador piezoeléctrico para realizar avisos acústicos de los objetos más próximos (imprescindible para invidentes).
El zumbador empezará a sonar de forma intermitente cuando haya objetos a partir de una distancia de 60 cms., y se irá acelerando la cadencia a medida que se acorta la distancia con el obstáculo. Este sonido intermitente se convertirá en continuo, cuando la distancia del obstáculo esté a 5 cms. o menos del sensor.
Resolución del display SSD1306
El display OLED SSD1306 que he utilizado en este montaje lo compré por Internet, y me ha llegado con ‘sorpresa’. El display incorpora un controlador gráfico de 128×64 pixel de resolución, el cuál controla el encendido de un display OLED de 128×32 pixel. Esto supone un 50% de pérdida de resolución, o visto de otra forma, es necesario enviar al display el doble de la información que va a presentar. Cuando el display muestra textos o números utilizando su font de caracteres, sólo se puede apreciar el problema cuando el tamaño de letra es 1. El problema es que si se carga un gráfico en memoria, se pierde un 50% de su resolución, y se pierde la fidelidad del gráfico por la pérdida de puntos. Observa en la imagen siguiente, que la altura en pixel de los caracteres es la mitad de la que debería ser, teniendo en cuenta que el direccionamiento del cursor si es el correcto.
El proceso que he seguido para cargar el gráfico, ha sido convertir la resolución del archivo original de 128×64 pixel a 128×32, luego corregir con un editor de dibujo los detalles más visibles (Paint o similar), y volver a redimensionar el gráfico a 128×64 pixel para poder utilizarlo en este display sin perder fidelidad.
Si utilizas un display con una resolución correcta (128×64), este último paso no lo tienes que hacer.
Programar gráficos en el display
Si quieres generar tu propio gráfico para que aparezca en el display, puedes sustituir el código del gráfico que yo he puesto por el tuyo. Para crear este código a partir de una imagen BMP, la forma mas sencilla de hacerlo es mediante el software: LCD Assistant
Firmware
El código de programación de este sensor de proximidad, se puede descargar desde el siguiente enlace: Sensor de proximidad
Construcción de un medidor de humedad, temperatura real y la sensación térmica. Para este montaje voy a utilizar el sensor de temperatura y humedad DHT11, y como controlador utilizaré Arduino. La sensación térmica describe el grado de incomodidad que el ser humano percibe, como resultado de la combinación de la temperatura, humedad y el viento. La humedad, junto con la velocidad del aire hacen que la sensación de frío sea mayor en invierno, y la sensación de calor más intensa en verano.
La temperatura y la sensación térmica
Es habitual que nos fijemos en la temperatura que muestra un termómetro, y rápidamente asociemos el valor que hemos leído con la sensación de frío o calor que vamos a sentir. Sin embargo, la sensación térmica varía en función de otros factores, como son la humedad relativa del aire y su velocidad.
El cuerpo humano intenta mantener su temperatura corporal a un valor constante, alrededor de los 37ºC y la piel es el principal órgano encargado de regular la temperatura:
Cuando aumenta la temperatura del cuerpo, se dilatan los vasos sanguíneos y aumenta el flujo de sangre por la piel, y la piel en contacto con el exterior hace de radiador y se reduce la temperatura. Si el calor es excesivo, se abren los poros y se comienza a sudar. El sudor es un método de enfriamiento muy efectivo, porque su evaporación provoca un enfriamiento mucho más rápido.
Cuando el cuerpo se enfría, los vasos sanguíneos se contraen y el flujo sanguíneo se reduce. Los músculos son estimulados para generar más calor, pudiendo llegar a provocar temblores involuntarios. Así el cuerpo puede aumentar su temperatura rápidamente en caso de necesidad.
En definitiva, la piel humana es el sensor que detecta las diferencias de temperatura entre el cuerpo y el ambiente, para reaccionar en consecuencia. Si tenemos en cuenta que la temperatura de la piel se mantiene alrededor de los 32ºC, la sensación térmica variará de forma más brusca, cuando más nos alejemos de dicho valor y dependerá de la humedad y velocidad del aire exterior.
La sensación térmica describe el grado de incomodidad que el ser humano percibe, como resultado de la combinación de la temperatura, humedad y el viento. La humedad, junto con la velocidad del aire hacen que la sensación de frío sea mayor en invierno, y la sensación de calor más intensa en verano.
La humedad en verano y en invierno
En verano, con temperaturas altas, un exceso de humedad en el ambiente impide que el sudor se evapore de forma eficiente, provocando una sensación de calor más alta.
En invierno, con temperaturas bajas, un exceso de humedad en el ambiente provoca una hidratación mayor de la piel, condensando partículas de agua en la superficie como si fuera sudor, y su evaporación provoca una sensación de frío mayor que la que muestra el termómetro
Si queremos saber el grado de frío o calor, sobre todo en las regiones de climas húmedos, es mucho más útil conocer la sensación térmica que la temperatura. La humedad relativa del aire, representada con las siglas HR o la letra griega Φ (fi), es la concentración de vapor de agua en el aire.
Una vez corregido el valor de temperatura con la sensación térmica debido a la humedad, si además hay viento con una velocidad superior a 12,5 km/h, habría que aplicar al valor obtenido una nueva corrección.
La corrección con el viento es mucho menor que la provocada por la humedad. Como se puede ver en la gráfica anterior, la sensación de calor aumenta a partir de 34ºC y también disminuye a partir de ese mismo valor.
Medir la sensación térmica
La construcción de un medidor que muestre el valor de la sensación térmica, es sencilla y de bajo costo. Con Arduino el código de programación es muy corto, y además las fórmulas de corrección ya están incluidas dentro de las librerías del sensor DHTxx. Para este montaje utilicé el sensor DHT11, pero si se requiere una mayor precisión, es mejor utilizar el DHT22. El controlador de este medidor está hecho con Arduino, y la presentación de los valores se muestra en un display LCD de 2×16 caracteres. Todo el conjunto se podría fabricar sin tener que soldar ningún componente, utilizando un Arduino UNO junto con su ‘Shield LCD‘. El sensor de temperatura/humedad se puede conectar con terminales de conexión en la tarjeta Arduino, porque el sensor DHT11 se puede comprar montado en una pequeña placa PCB, en la que lleva montada una resistencia Pull-Up y el condensador de desacoplo para la alimentación. La alimentación de todo el conjunto es de 5 VDC, por lo que se podría utilizar cualquier cargador USB que tengamos en casa.
También puedes optar por hacer un montaje independiente, sin la placa de desarrollo de Arduino. Así te saldrá todo más barato y su tamaño será menor:
Firmware (v1)
El código de programación de este medidor, junto con la librería de control necesaria para el sensor DHTxx, se puede descargar desde el siguiente enlace: Temperatura y humedad
El medidor de temperatura y humedad lo puedes montar dentro de en una pequeña caja de plástico (100 x 60 x 25 mm), incluyendo dentro su propia fuente conmutada de 5VDC. Los detalles de este montaje, los puedes ver en el siguiente video:
Sensación y conductividad térmica
¿Por qué tiene tan mala respuesta a la temperatura el sensor DHT11?. El problema es que el sensor de temperatura DHT11 está encerrado dentro de una jaula de plástico, por lo que su conductividad térmica entre el exterior y el sensor es mala, y esto provoca que su tiempo de respuesta sea lento. Para corregir este fallo, he montado un segundo sensor de temperatura en el termómetro. He utilizado el sensor DS18B20 con encapsulado metálico para medir la temperatura, dejando el sensor DHT11 para medir la humedad y calcular la sensación térmica.
Tiempo de respuesta de un sensor
La respuesta en el tiempo de un sensor de temperatura depende de la conductividad térmica del material utilizado entre el elemento a medir (aire, líquido) y el sensor de temperatura. Como norma general, los materiales mas conductivos eléctricamente, también lo son térmicamente.
Utilizar un sensor de temperatura con encapsulado metálico, es una buena elección cuando se necesita obtener una respuesta rápida en la medida.
Aunque esto no siempre es imprescindible y hay veces que es mejor utilizar un sensor de respuesta más lenta, con el fin de mostrar la temperatura ambiente y evitar que se muestren cambios bruscos debido a una corriente de aire frío o caliente ocasional.
El sensor de temperatura y humedad DHT11 es de respuesta lenta y muy válido para mostrar la temperatura en zonas abiertas, pero no es el más adecuado para medir valores en recintos pequeños (sauna, cámara frigorífica, caldera).
¿Es útil el montaje anterior?
Dependiendo del uso que le quieres dar al medidor de temperatura ambiente, tendrás que elegir el sensor de temperatura que mejor se adapte al entorno. Si quieres mostrar la temperatura en un espacio abierto, el montaje anterior te podría servir. Pero si lo quieres para hacer medidas rápidas, o para mostrar los valores dentro de en un recinto pequeño, es aconsejable añadir al esquema anterior un segundo sensor de temperatura con encapsulado metálico.
Firmware (v2)
El código de programación del medidor con doble sensor, se puede descargar desde el siguiente enlace:Temperatura y humedad (v2)
Fabricación de un Reloj-Cronómetro-Temperatura, encadenando 4 módulos SMD de 7 segmentos con control serie. El controlador de este reloj está construido a partir del micro controlador AT89S52, con encapsulado TQFP de 44 pines (SMD).
ESQUEMAS
Módulo RTC: DS1302
Las comunicaciones entre el micro-controlador y el chip de reloj DS1302 se realizan mediante 3 hilos:
Reloj (SCLK)
Entrada/Salida de datos (I/O)
Habilitación (CE)
El módulo RTC ya incluye el cristal de cuarzo que necesita el chip DS1302, y una pila de 3V para mantener sus datos cuando falta la alimentación. La conexión entre este módulo y la CPU es de 5 hilos, 2 de la alimentación y 3 de control.
Sensor de temperatura: DS18B20
El control de este sensor de temperatura es bidireccional y se realiza mediante un sólo pin, así su encapsulado sólo tiene 3 pines: VCC, GND y Datos.
El DS18B20 se puede comprar con encapsulado normal, su aspecto es el de un transistor, o ya montado dentro de una cápsula de acero inoxidable. El encapsulado en acero inoxidable permite sumergir el sensor en líquidos, y también es muy aconsejable para utilizarlo en el exterior.
El chip DS18B20 es un sensor temperatura digital, su resolución es configurable entre 9 y 12 bits. Por defecto, de fábrica está configurado con 12 bits. A máxima resolución, sus últimos 4 bits se corresponden con las lecturas decimales de: 0,5°/ 0,25° / 0,125° / 0,0625°. Puedes ver más detalles técnicos de este sensor en el siguiente artículo:
Para alimentar este reloj se necesita una fuente de alimentación de 12 VDC, con una corriente mínima de 200 mA. La solución más barata y eficaz, es incluir dentro de la caja del reloj una pequeña fuente de alimentación conmutada de 12V / 400 mA.
CONFIGURACIÓN
Para cambiar los datos de fecha, hora, cronómetro y el resto de parámetros de configuración, se utilizan dos pulsadores:
MODE
PLUS
Para modificar los datos del reloj, seguir el siguiente diagrama de configuración:
SELECCIONAR MODO: RELOJ/CRONÓMETRO
El modo de funcionamiento RELOJ/CRONÓMETRO se determina durante la fase de arranque, mientras se está mostrando en el display un mensaje de texto rotando, en la que se muestra la versión del firmware. Si no se toca ningún pulsador, el modo de funcionamiento será: RELOJ. Para cambiar a modo CRONÓMETRO en cualquier momento, seguir los siguientes pasos:
Pulsar los dos botones a la vez: RESET
Cuando aparezca el mensaje rotante, mantener pulsado el botón 1 (MODE)
Una vez que que hayamos entrado en el modo CRONÓMETRO, ya podremos configurar sus parámetros de funcionamiento. Estos valores se guardarán en el chip de memoria del reloj (DS1302), y estos serán los nuevos valores de arranque del cronómetro. Al igual que sucede con los parámetros del reloj, tendremos que tener conectada la pila de tampón en el chip, si no queremos perder todos los datos cuando falte la alimentación.
Detalles de la presentación del Display
Cuando se está funcionando en modo RELOJ, es posible seleccionar entre 3 tipos de presentación. La información que muestra el display se cambia mediante una breve pulsación del botón 2 (PLUS):
Hora / (*) Alterno: Hora y Temperatura
Temperatura
Alterno: Hora, Fecha y Temperatura
(*) El modo alterno de la presentación 1ª, se muestra en caso de que se active la alarma de temperatura en el menú de configuración. En caso contrario, la presentación 1ª mostrará la hora de forma permanente.
Cuando se active el modo de presentación alterno, la temperatura se mostrará de forma síncrona con el reloj, y lo hará cada 5 segundos. Entre el segundo 5 y el 55 de cada minuto, nunca se mostrará en el segundo ‘0’ de cada minuto. La temperatura sólo aparecerá durante un segundo de cada 5, en total 11 veces en cada minuto.
Alarma de Temperatura
La lectura del sensor de Temperatura se realiza cada 10 segundos. De manera que entre dos presentaciones sucesivas de 5 segundos, sólo una de las lecturas será en tiempo real. Cuando está utilizando la presentación 1ª en modo alterno, los segundos acabados en ‘0’ mostrarán la temperatura leída anteriormente, excepto en el segundo ‘0’ de cada minuto que no se muestra. En el caso de que la temperatura sobrepasara alguno de los dos umbrales de alarma, el aviso acústico se realizará cuando el valor acaba de ser leído. Es decir, la alarma de temperatura sólo sonaría en los segundos acabados en ‘5’.
Alarmas horarias
El reloj permite configurar 2 alarmas horarias, sin prioridad entre ellas pero siguiendo este criterio: Cuando una de las dos alarmas se dispara, mientras permanezca en su periodo activo, la otra alarma nunca podrá dispararse.
Las dos alarmas horarias pueden valer para los 7 días de la semana, o estar limitadas a los 5 días laborables, quedando inactivas todos los Sábados y Domingos. En modo RELOJ, el punto decimal del dígito de la derecha (esquina inferior derecha del display) esta asociado a la alarma horaria. Las alarmas horarias pueden configurarse para que suenen una sola vez (1 minuto si no se silencia antes) o con repeticiones. Las repeticiones se realizarán cada 5 segundos. Para silenciar el sonido de una alarma, realizar una breve pulsación en el botón 2 (PLUS). Si después de sonar una alarma se quieren anular todas sus repeticiones sin cambiar la configuración del reloj, es necesario pulsar los dos botones a la vez (RESET).
Estados posibles del LED indicador de alarma horaria:
APAGADO: No existe ninguna alarma horaria en las próximas 24 horas
PARPADEANDO: Existe alguna alarma horaria dentro de las próximas 24 horas.
FIJO: Alarma ACTIVA, sonando o dentro del periodo de repetición.
Hora: Verano/Invierno
En algunos países existen dos tipos horarios:
Horario estándar, el que corresponde con el huso horario (Horario de invierno).
Horario de verano:
El cambio de hora se aplica una vez al año, haciendo que del horario estándar (o de invierno) se pase al horario de verano. Aunque la primera vez que se aplicó este cambio de hora fue durante la Primera Guerra Mundial, dejo de aplicarse hasta la crisis del petróleo de 1973. El objetivo es el de aprovechar mejor la luz solar, consumiendo menos electricidad.
HORARIO DE VERANO
Último domingo de MARZO: A las 2:00 AM se adelanta a las 3:00 AM
… se adelante 1 hora el reloj
HORARIO DE INVIERNO
Último domingo de OCTUBRE: A las 3:00 AM se atrasa a las 2:00 AM
… se atrasa 1 hora el reloj
FIRMWARE
El firmware de este reloj se programa una vez montado el micro controlador (AT89S52) en su circuito impreso, a través de su interface de programación serie ICSP. Lo ideal sería utilizar un programador que tuviera dicho interface, pero si no lo tienes, puedes hacerlo con ARDUINO.
En esta versión se corrige el tamaño de los taladros, se incluye la posibilidad de utilizar dos tipos de conector en sus salidas y se añade una toma auxiliar de +5V
Archivos GERBER para fabricar el PCB del Display ( 1 dígito de 7 segmentos):
Construcción de un vúmetro LED RGB, controlado por Arduino. Este montaje consiste en un par de tiras RGB de un metro, con 30 LED SMD de tipo inteligente (WS2812) cada una. Este tipo de diodos incluye en su interior su propio controlador. Los diodos WS2812 disponen de una entrada de datos, la salida y los dos pines de alimentación. La información se transmite en serie, desplazando los datos de un pixel hacia el siguiente, y cada pixel utiliza 24 bit de información… 8 bit por cada color (RGB). El control de este vúmetro LED se realiza con Arduino. El sonido se capta mediante un micrófono amplificado, de manera que no es necesario realizar ninguna conexión eléctrica entre el reproductor de audio y el vúmetro. Para facilitar el uso de este vúmetro en cualquier lugar, la alimentación de 5V se suministra con el módulo ‘Step Down-Converter‘ MP1584. De esta manera es posible alimentar este vúmetro con cualquier alimentador de continua, entre 6 y 28 voltios. Así podría utilizarse también dentro del coche, alimentado desde los 12V de la batería, y mostrar los efectos luminosos al ritmo del sonido del auto radio.
Tiras LED WS2812
Existen varios tipos de tiras LED RGB, pudiendo elegir la separación entre diodos y el grado de protección IP. Cuanto mayor sea el número de diodos LED por metro, mejor será el efecto luminoso que se pretenda mostrar (mayor resolución y brillo), pero el consumo también será mayor. Dependiendo del lugar donde se vayan a instalar las tiras LED, podremos elegir un grado de protección IP. El acabado IP67 permite utilizar estas tiras LED a la intemperie, protegiendo todos sus componentes electrónicos contra el agua y el polvo. Los consumos que se muestran en la tabla siguiente, son consumos máximos (cuando se encienden los tres colores de cada pixel a máximo brillo).
Las tiras LED WS2812 necesitan 3 hilos de conexión, 2 para la alimentación y 1 para datos. Las tiras LED se pueden cortar al tamaño que se necesite, y también se pueden ampliar juntando la salida de una de ellas con la entrada de otra. Cuando se vayan a utilizar tiras de gran tamaño, es importante conectar los hilos de alimentación con cable en varios puntos. Así se evitará la caída de tensión a lo largo de la línea, lo que provocaría un cambio de color y brillo sobre el color que se pretenda mostrar.
Descripción del circuito
Este vúmetro LED no necesita una conexión eléctrica con la fuente de sonido, facilitando así su uso y pudiendo mostrar efectos luminosos al ritmo del sonido de una sala, dentro de un coche, etc.. El sonido se capta por un micrófono de tipo ‘Electret‘, el cual se amplifica con un operacional, hasta conseguir el nivel necesario para excitar la entrada analógica del micro-controlador de Arduino ATMEGA328P.
En el esquema se muestra el montaje del micrófono y el amplificador operacional, pero también podría utilizarse un módulo SMD ya montado, el cuál se vende para el uso con Arduino, y conectar su salida de audio con la entrada A0 de Arduino. Para facilitar el uso de este vúmetro en cualquier lugar, la alimentación de 5V se suministra con el módulo ‘Step Down-Converter‘ MP1584.
Construcción del vúmetro
El circuito de control del vúmetro lo he montado en una placa de circuito impreso de tipo universal.
Posteriormente fabriqué una caja con metacrilato, haciendo la serigrafía con la CNC.
A continuación se muestra el vúmetro LED funcionando.
Firmware ARDUINO
El código de Arduino que he utilizado para este proyecto lo conseguí como un comentario en Internet. No conozco el autor del código, y por eso no figura su nombre en la cabecera. Este código, junto con la librería de control necesaria para el WS2812, se puede descargar desde el siguiente enlace: Vúmetro RGB