¿Programar con interrupciones?

Elegir el modo de programar un microprocesador: consultando de forma cíclica el estado de cada periférico (Polling), o creando una interrupción por cada periférico a controlar. Métodos a seguir para programar el microprocesador AT89S52 con 2 interrupciones y una consulta cíclica. Posibles efectos indeseados cuando se programa con interrupciones.

Interrupciones AT89S52

Cuando se programa un microprocesador con la finalidad de tomar decisiones, dependiendo del estado de alguno o varios dispositivos periféricos, como podrían ser: pulsadores, un reloj en tiempo real (RTC), termómetros, alarmas, etc… existen dos formas posibles de hacerlo:

-> La forma más sencilla y clásica sería consultar de forma cíclica el estado de cada periférico.

-> Lo ideal sería habilitar una interrupción en el procesador por cada periférico a controlar.

Consulta secuencial y periódica

En este proceso de consulta, también conocido como polling en inglés, es el propio procesador el que determina el momento en el que realiza la consulta.

Consulta secuencial

Este método tiene el inconveniente de ser poco eficiente, porque el procesador consume muchos recursos realizando las instrucciones de sondeo… y además en algunas aplicaciones, una pequeña demora de tiempo afecta a la precisión de la medida o produce efectos indeseados. Por ejemplo, un error en la precisión cuando se utiliza un temporizador del procesador como patrón de tiempo de un reloj o cronómetro. Efectos indeseados, como podrían ser parpadeos, cuando se genera una señal PWM para el control de brillo de un display… o inestabilidad  si se utiliza esta misma señal PWM para  regular la velocidad de un motor.

Programar con interrupciones

Una interrupción sirve para detectar en tiempo real el momento en el que se debe realizar la consulta a cada periférico. Con la interrupción, es el periférico quien se encarga de avisar al procesador, y mientras tanto el procesador puede realizar otras tareas.

Habilitación de las interrupciones

El orden de prioridad de todas las interrupciones se pueden programar en el procesador. Así el procesador decidirá si un proceso se debe interrumpir o no, en caso de que se produzca una interrupción mientras se está atendiendo a otra, o cuando se produzcan dos o más interrupciones de forma simultánea. Un mal uso de la prioridad en las interrupciones, también podría provocar efectos indeseados.

Prioridad de las interrupciones

En la imagen anterior, al no tener la prioridad de interrupción el Timer que genera la señal PWM, se producen fluctuaciones en el ancho de impulso generado.

 

 

Shift Register (Registro de desplazamiento)

Funcionamiento de un Shift Register o Registro de desplazamiento, muy útil cuando se necesita controlar una gran cantidad de dispositivos de forma simultánea, utilizando un microprocesador con un número limitado de terminales. Este componente electrónico –Shift Register– es muy usado en centrales de control destinados a la domótica, paneles electrónicos de tipo LED, etc.

8-Bit Shift Register

En los circuitos digitales, un registro de desplazamiento es una cascada de Flip-Flops que comparten el mismo reloj, en el que la salida de cada Flip-Flop está conectada a la entrada de datos del siguiente Flip-Flop de la cadena, dando lugar a un circuito que desplaza por una posición la matriz de bits almacenada en ella, desplazando los datos presentes en su entrada y desplazando el último bit en la matriz, en cada transición de la entrada de reloj.

Esquema interno del 74HC595

Los registros de desplazamiento –Shift Register– pueden tener entradas y salidas tanto en paralelo como en serie. Normalmente se configuran a menudo como Serial-In, Parallel-Out (SIPO) o como Parallel-In, Serial-Out (PISO). También hay modelos que tienen entrada en serie y paralelo y otros con salida en serie y en paralelo. También hay registros de desplazamiento bidireccionales que permiten el desplazamiento en ambas direcciones (L → R o R → L). La entrada en serie y la última salida de un registro de desplazamiento, también se pueden conectar para crear un registro de desplazamiento circular.

Funcionamiento (Shift Register)

Para comprender mejor el funcionamiento de un registro de desplazamiento, se puede montar en una placa de pruebas (Protoboard) el siguiente circuito:

Display de 7 segmentos con 74HC595

El hilo de entrada de datos (SER/DATA) se puede conectar a la línea de +5 o GND, dependiendo del estado lógico (1/0) que queramos introducir al registro. A continuación se pulsa el botón SRCLK/CLOCK, para que el primer dato entre en el registro, desplazando todos sus estados una posición en orden creciente. Si queremos visualizar el estado de los registros en el display, a continuación pulsaremos el botón RCLK/STROBE.

Pruebas del 74HC595

Para que funcione el registro de desplazamiento, el hilo SRCLR/RESET tiene que estar conectado a nivel alto (+5V), si lo conectamos a GND se inicializarán todos los registros poniéndose a cero (Reset).

LUZ ELECTROLUMINISCENTE

La electroluminiscencia es un fenómeno óptico y eléctrico, en el cual se genera luz a partir de una corriente eléctrica. Los materiales electroluminiscentes son aquellos que contienen una cierta cantidad de fósforo y emiten una luz al paso de una corriente eléctrica. Se analiza el funcionamiento de un panel gráfico, con control de sonido y también se realizan pruebas con hilos electroluminiscentes de diferentes colores.

Funcionamiento

Capas EL

Los iones activadores actúan como emisores o centros luminiscentes y poseen niveles energéticos que pueden ser activados por excitación directa o indirecta, por transferencia de energía a través de algún lugar de la estructura del material portador para que la emisión de luz ocurra. Un fósforo adecuado debe absorber la energía de excitación, y después emitir luz rápida y tan eficiente como sea posible. El tiempo que transcurre entre la excitación y la emisión debe ser lo suficientemente pequeño para evitar destellos. La excitación de los fósforos se consigue mediante la aplicación de campos eléctricos intensos a altas frecuencias.

Luz electroluminiscente

Ventajas

  •  Bajo consumo de corriente
  • Vida larga, hasta de 50,000 horas
  • Regulación propia, por lo que no se requiere un circuito de control
  • Emisión de luz omnidireccional
  • Opera en un rango de temperatura amplio, desde -60°C hasta 90°C
  • Pueden usarse en exteriores

Consumo de la placa EL

Inconvenientes

  • Emisión de luz limitada.
  • No hay una gran variedad de colores.
  • Poca eficiencia, alrededor de 2..6 Lm/W
  • Se requieren altos voltajes, desde 60 V hasta 600 V

Alimentación placa EL

Hilo electroluminiscente (Wire EL)

Luminosidad del hilo EL

La estructura del hilo EL (Wire) consiste en un núcleo conductor de cobre que funciona como electrodo, el cuál está cubierto con un material fósforo y a su vez está cubierta por un forro de plástico transparente. Unos hilo muy fino en espiral se encuentra alrededor del forro de plástico transparente. Este cable funciona como un segundo electrodo. Finalmente, ese forro de plástico transparente puede estar cubierto por otro forro de color. Cuando se aplica una diferencia de potencial, la capa fósforo emite luz entre los espacios de los cables al crearse un campo eléctrico.

Hilo electroluminiscente

Circuito inversor

El inversor que se usa en el hilo EL sirve para proporcionar la frecuencia necesaria para que brille. Cuanto más alta sea la frecuencia, mayor brillo proporcionará el hilo y su vida útil se reducirá; en cambio, si la frecuencia es menor, el brillo se reduce pero su vida útil aumenta.

Alimentación del hilo EL

Por supuesto, deberá escogerse el inversor dependiendo de la longitud del cable y de la frecuencia que quiera emplearse.

 

LED, corriente de trabajo

LED, corriente de trabajo: ¿Cómo saber la tensión en bornas de un diodo LED, cuando está funcionando a su corriente nominal?. Conocer la tensión de trabajo de un diodo LED es muy importante para calcular el valor de su resistencia de limitación. Las pruebas se realizan con un medidor de componentes electrónicos y el medidor de diodos LED que hicimos en un proyecto anterior:

Comprobador de diodos – Diode tester

Punto de trabajo de un diodo LED

Para obtener el máximo rendimiento lumínico de un diodo LED, es necesario ajustar correctamente su punto de trabajo. Si disponemos de la hoja de especificaciones del fabricantes, podemos conocer cuál es la tensión y corriente que debemos suministrar al diodo para obtener su máximo rendimiento lumínico, sin  acortar su vida útil.

Cálculo de la resistencia LED

Conociendo los valores de tensión y corriente del diodo, ya podemos calcular el valor de la resistencia de limitación que le tenemos que conectar en serie (resistencia de limitación), aplicando la Ley de Ohm.

Sistemas de medida

Si utilizamos un comprobador de componentes electrónicos o un polímetro para medir un diodo LED, obtenemos un valor de tensión de funcionamiento… pero desconocemos el valor de corriente a la cuál se ha efectuado esa medida. Si utilizamos ese valor para calcular la resistencia de limitación, lo normal es que la luminosidad del diodo LED sea baja.

Comprobador de componentes

Si queremos conocer la tensión de trabajo de un diodo LED con precisión, tendremos que intercalar un medidor de corriente (amperímetro) en serie con el diodo LED y alimentar el circuito con una fuente de alimentación variable. Como protección, sería conveniente intercalar una resistencia en serie con el circuito y subir poco a poco la tensión de salida de la fuente, hasta conseguir el valor de corriente especificado por el fabricante. En este punto, deberíamos medir la tensión en bornas del diodo LED… y esa sería la tensión que deberíamos utilizar para realizar los cálculos, y saber el valor de la resistencia que debemos conectar en serie con el diodo LED. Todo esto lo podríamos hacer con el comprobador de diodos.

Punto de trabajo de un diodo LED

En el siguiente video se muestra una prueba comparativa entre un comprobador de componentes electrónicos y el comprobador de diodos.

 

Tinta BORRABLE

Ventajas e inconvenientes al utilizar un bolígrafo de tinta de gel borrable. Este bolígrafo es muy interesante para utilizarlo como marcador de telas, para añadir comentarios y marcas en un libro de texto… pero también es muy conveniente conocer sus limitaciones, porque nos podría crear un gran problema.

Tinta borrable

Cómo funcionan los bolígrafos borrables

Un bolígrafo tradicional tiñe el papel con su tinta. Dependiendo del tipo de tinta, la penetración de la tinta en el papel varía. En los años ’80 se empezaron a comercializar los bolígrafos con tintas borrables. El borrado se hacía a base de arañar la capa superficial del papel, porque la tinta se secaba en la superficie del papel.

Tinta de gel borrable

Hace unos 4-5 años aproximadamente, se comenzaron a comercializar los bolígrafos con tinta de gel borrables. En este caso, la tinta es un gel teñido con un color (hay varios a elegir) y el borrado se realiza mediante la fricción de una goma semirrígida, que no deja residuos ni marca el papel.

A primera vista todo parecen ventajas, pero lo que no dicen los fabricantes y vendedores son sus inconvenientes. Aunque el borrado sea por fricción, en realidad se está borrando porque aumenta su temperatura. El gel pierde su color al aumentar la temperatura … y se queda transparente. Al frotar con la goma de borrado, aumenta la temperatura por fricción y la tinta se hace invisible.

Temperatura de borrado

BORRADO por temperatura

Esto sucede cuando la temperatura supera los 50ºC, o disminuye por debajo de -15ºC aproximadamente. Con temperaturas altas, sin llegar a los 50ºC, la tinta va perdiendo color.

Ventajas

Un bolígrafo con tinta de gel borrable puede ser muy útil, cuando queremos eliminar rápidamente todas las marcas  que hemos realizado con este tipo de tinta. Por ejemplo los apuntes hechos en un libro de texto, las marcas en indicaciones realizadas en telas, etc. Aplicando calor, ya sea con una plancha, aire caliente, un horno… al superar los 50º C la tinta se quedará invisible de forma permanente.

Inconvenientes

Es importante no utilizar este tipo de bolígrafos para escribir documentos importantes (examen, diario, libro de anotaciones, etc.), porque si quedara expuesto el documento a una fuente de calor o frío extremo, desaparecería todo lo escrito y nos quedaríamos con un documento en blanco.

Borrado por temperatura

En el siguiente video se pueden ver con más detalle todas las pruebas realizadas.