Actualización del firmware del reloj de precisión (ESP32), para controlar el encendido y apagado automático de dos equipos de aire acondicionado. Automatizando el consumo eléctrico en función de los excedentes de energía Solar, se puede reforzar el sistema de climatización de una vivienda a coste cero.
Excedentes de energía Solar
Cuando se instalan paneles solares en una vivienda, es muy importante adaptar los hábitos del consumo con los de mayor producción solar, porque esta es la forma más rápida de amortizar la inversión. Hay electrodomésticos que no se pueden adaptar a las horas de sol, como son los frigoríficos y cocinas, pero hay otros que sí. Por ejemplo: lavadora, lavaplatos, secadora, plancha y los equipos auxiliares de climatización.
La ventaja principal de una instalación solar orientada al autoconsumo de una vivienda, es que durante el día se podría disponer de una potencia de pico superior a la contratada. Además esta energía es gratis, y se genera en los periodos en los que el precio de la electricidad es más cara, produciendo así un ahorro mayor en la factura.
Por otra parte, con la energía solar sobrante se podría mejorar el sistema de climatización de la vivienda, consiguiendo así un mayor confort a coste cero. La climatización de una vivienda siempre es mejorable, porque intentaremos reducir su coste al mínimo imprescindible, limitando el uso de la calefacción en el invierno y del aire acondicionado en verano.
Automatizar el consumo eléctrico
Hacer un uso eficiente de la energía solar sobrante para aplicarla a la climatización no parece complicado, el problema es que la radiación solar es muy variable y podría provocar picos de consumo extra cuando cambian las condiciones meteorológicas. La solución sería automatizar la conexión y desconexión de los sistemas de climatización y agua caliente auxiliares, adaptándolos a los excedentes de producción solar. Así estos elementos de climatización auxiliar utilizarían la energía sobrante y se desconectarían rápidamente de forma automática. Por ejemplo al aumentar el consumo en la vivienda por haber conectado la lavadora, o debido a la caída de la producción solar al paso de nubes.
Hace unos meses hice una adaptación del reloj de precisión construido con un módulo ESP32, para poder visualizar los valores de producción solar en su display. Esta información es muy útil, porque muestra la energía sobrante que podríamos utilizar a coste cero.
En esta ocasión haré unas modificaciones sobre el firmware anterior, para poder controlar el encendido y apagado automático de dos equipos de aire acondicionado. En concreto lo voy a controlar los dos splitter de un equipo SAMSUNG, modelo AM18A1E09. A través del interface Web de control del ESP32, es posible configurar los umbrales de encendido y apagado de forma individual, configurando a uno de ellos como principal y al otro como secundario.
Así el equipo configurado como 1 será el principal, se conectará el primero y se apagará el último, provocando menos cortes de encendido/apagado que el número 2. Según el fabricante SAMSUNG, cada splitter consume aproximadamente 0,87 kW. Así la configuración de encendido del equipo principal se hará cuando el excedente de potencia sea superior a 1,5 kW, y se desconectará cuando el excedente sea inferior a 100W. El equipo secundario se conectará cuando el excedente de potencia sea superior a 1,7 kW y se desconectará cuando el excedente sea inferior a 300W.
Compatibilidad con el funcinamiento en modo manual
Este controlador de encendido y apagado es totalmente compatible con el funcionamiento manual del aire acondicionada, ya sea a través del pulsador de encendido del splitter, o de su mando a distancia. Cuando se conecta el aire acondicionado utilizando el mando a distancia o su pulsador de encendido, el módulo de control detectará que está funcionando en modo manual, y no tomará el control del equipo. Cuando se desconecte el equipo de forma manual, después de 3 minutos, el módulo ESP32 tomará el control automático de encendido y apagado. En caso de que no se quisiera conectar el aire acondicionado en ningún momento, por ejemplo en invierno, se podría deshabilitar la función de control mediante el interface Web del ESP32, o desconectar la alimentación del módulo de control mediante su interruptor. Con el fin de proteger el compresor del equipo, he fijado el intervalo de tiempo mínimo entre dos maniobras en 3 minutos. Esta limitación es sólo en modo automático, porque desde el interface Web del ESP32, el mando a distancia o el pulsador del splitter, se podrá encender y apagar el equipo en cualquier momento.
Montaje del controlador y sus conexiones, en un equipo SAMSUNG modelo AM18A1E9
Aunque este equipo de aire acondicionado sea doble, cada evaporador funciona de forma independiente y habría que montar su propio controlador.
Este control automático está construido con un módulo ESP32 y un pequeño display OLED. Como el firmware del módulo ESP32 es totalmente compatible con el reloj de precisión, sería posible montar también el display de 8 dígitos y el amplificador de audio.
Este circuito está formado por 3 bloques: el interface de entrada, el circuito de control (ESP32) y el interface de salida:
Interface de entrada
Es el circuito detector de estado del evaporador o splitter, y es necesario para informar al módulo de control si el equipo está funcionando o parado. Como el ventilador del evaporador siempre estará alimentado cuando el equipo funciona, lo he tomado como referencia. El ventilador de este equipo tiene dos devanados, entre los hilos azul y amarillo he medido una tensión alterna de 120V aproximadamente, y entre los hilos azul y rojo de 160VAC. Ambas tensiones apenas varían con la velocidad del ventilador, pero he tomado como referencia la tensión de los hilos azul y rojo, porque me han parecido más estables. Para aislar la tensión de red del circuito de control, he intercalado el opto-transistor H2210. He utilizado este modelo porque tengo varios, pero podría utilizarse cualquier otro. El LED del opto-transistor se encenderá al recibir la tensión alterna del ventilador, pero esta tensión alterna de 160V hay que convertirla a continua y reducirla a 1 voltio aproximadamente. De esto se encarga el rectificador de media onda junto con la resistencia limitadora y el condensador de filtro. Al rectificar en media onda, la disipación en la resistencia es menor y con una resistencia de 47K 1/4W funciona perfectamente. El condensador de filtro de 1000uF es muy importante, porque hay que evitar que el rizado de 50Hz se transmita al circuito de salida. El transistor de salida del opto-acoplador conducirá cuando el evaporador esté funcionando, provocando que el siguiente transistor deje de conducir y entregue un nivel alto en el pin IO2 del módulo ESP32. He utilizado este pin porque va conectado con el LED azul del módulo ESP32, y esta indicación es muy útil para hacer pruebas. Para evitar posibles transiciones de estado debido a ruidos de la fuente de alimentación o inducciones generadas por el propio módulo ESP32, he añadido en la propia placa del módulo un condensador cerámico de 100nF. A pesar de que el módulo ESP32 funciona con 3 voltios, no hay problema en conectar la resistencia de colector del transistor a 5V, porque hay una resistencia en serie de 10K y la corriente será muy baja.
Hay que tener en cuenta que la placa de control de este equipo de aire acondicionado realiza un test cada vez que se da la orden de puesta en marcha, y tarda alrededor de 8 segundos en alimentar el ventilador del evaporador. Al apagar no sucede lo mismo, porque corta la alimentación del ventilador de inmediato. Para gestionar adecuadamente los estados desde el controlador y no producir falsas maniobras, en el firmware se produce una pausa de 10 segundos desde que se da la orden de arranque, antes de comprobar si el ventilador está alimentado. Cuando se da la orden de apagado, esta pausa se reduce a 2 segundos, es el tiempo necesario para mostrar la orden en el display OLED, antes de presentar el estado de funcionamiento del equipo.
Módulo de control ESP32
Es el encargado de gestionar las órdenes de control y mostrar la información en el display OLED, y de forma opcional en otro de 8 dígitos de 7 segmentos. Durante las pruebas, en alguna ocasión se quedó colgado el módulo ESP32 al conectar su alimentación, pero sólo sucedía cuando lo alimentaba con la fuente conmutada. Para solucionar este problema, he colocado un condensador de 10uF en los terminales de entrada de 5V del módulo ESP32.
Interface de salida
Es el encargado de enviar la orden de cambio de estado al evaporador del equipo de aire acondicionado. He utilizado el pin rotulado como TMS, el cual se corresponde con el GPIO14.
Este circuito actúa como si se pulsara el botón de encendido/apagado del evaporador, y lo hace mediante un transistor NPN en modo Open-Collector. Si medimos la tensión en el PCB de control del evaporador, entre los dos terminales del pulsador hay 5V de tensión continua y uno de los dos terminales es GND. Así el transistor de este módulo de control puede conectarse en paralelo de forma permanente, sin interferir al funcionamiento normal del equipo. Es importante conectar cada terminal en su sitio, el colector del transistor de salida se conecta con el terminal del pulsador en el que hemos medido +5V (terminal superior del pulsador).
Al alimentar el circuito de control me encontré con un problema, porque también se encendía el aire acondicionado. Cuando se reinicia el módulo ESP32 aparece una tensión alta en el pin TMS durante algo menos de 1 segundo, el tiempo que tarda el ESP32 en cargar los estados de inicio de sus pines, pero este tiempo es suficiente para crear una pulsación y provocar un cambo de estado en el evaporador. Para evitar este problema, he añadido un circuito RC en la entrada del transistor de control, compuesto por una resistencia de 100K y un condensador de 100uF. De esta forma es necesario recibir una tensión alta durante 2 segundos como mínimo, para provocar que el transistor empiece a conducir y se genere el cambio de estado. Como es lógico, los impulsos de control del cambio de estado los he tenido que configurar a 3 segundos.
Fuente de alimentación
Este control automático se alimenta con 5 voltios de continua, tensión que podría haber tomado de la placa de control del evaporador, pero es más seguro y fiable montar una fuente de alimentación aparte.
Los 230VAC de la fuente de alimentación se toman de los terminales 1 y 2 del evaporador, intercalando un pequeño interruptor en serie para poder desconectar por completo el circuito en cualquier momento.
Conexiones con el evaporador
He utilizado una placa aislante, para montar todos los componentes externos con el módulo ESP32. En un lateral está la clema de 4 conexiones, para conectar la alimentación de 5V (2 conexiones), la detección de encencido del evaporador GPIO2 y la salida TMS-GPIO14 para conectar con el transistor 2N2222 que contralará el encendido y apagado del evaporador (pulsador).
Las otras 3 clemas de 2 conexiones, son los 6 hilos que unen el controlador con el evaporador:
1 – Alimentación del controlador (230VAC)
- Marrón: FASE
- Azul: NEUTRO
2 – Tensión de los ventiladores (160VAC)
- Naranja: FASE
- Azul: NEUTRO
3 – Pulsador ON/OFF del evaporador
- Rojo: +5
- Negro: GND
Firmware del ESP32
El firmware que necesitas para programar el microcontrolador ESP32, lo puedes descargar de forma gratuita desde el siguiente enlace:
https://github.com/J-RPM/Solar-controller-with-ESP32
Caja 3D
El fichero .stl que necesitas para fabricar esta caja, lo puedes descargar desde el siguiente enlace: https://www.thingiverse.com/thing:6118679
¿Dónde fabricar el PCB?
Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos, pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.