¡Maldito foco LED! – Damn LED spotlight!

Avería de un foco LED de 12V, después de 72 horas de funcionamiento continuo. La reparación anterior se hizo sustituyendo la matriz LED original del foco,  por 4 diodos LED SMD de 1W en serie. Debido a un mal contacto térmico de los diodos con el bloque disipador del foco, uno de los diodos se quemó. Se vuelve a reparar el foco, mejorando mecánicamente el contacto térmico de los diodos con el disipador, y reduciendo ligeramente su corriente de trabajo.

A pesar de que este tipo de reparaciones no compensa, decido acabar con la reparación que comencé, ya que no dio buen resultado. Como era de esperar, uno de los 4 diodos LED se ha quemado, provocando el apagado del foco. Teniendo en cuenta que la corriente de trabajo de este foco es de 256 mA, corriente dentro de los límites del LED utilizado, el problema puede estar relacionado con la mala disipación térmica.

Reparación

La reparación consiste en sustituir el diodo LED quemado por uno nuevo, y unir de nuevo la serie de 4 diodos con masilla de dos componentes. Con el fin de mejorar el contacto térmico con la carcasa del foco, ya que esta hace de disipador, en esta ocasión el conjunto de los 4 diodos lo monto sin utilizar la placa soporte del diodo original. Una vez seca la masilla, es conveniente aplanar todo el conjunto con una lija de grano fino (imagen siguiente).

Aplanado LED

Reducir la corriente del LED

A pesar de que la corriente de trabajo del foco (256 mA) está dentro del margen de funcionamiento de los diodos LED utilizados (250 – 300mA), decido reducir ligeramente su valor. El circuito de control ajusta la corriente de trabajo con 2 resistencias en paralelo, una de 1 ohmio y la otra de 6,2. Al eliminar la resistencia de 6,2 ohmios, la corriente del circuito se reducirá de 256 mA hasta 220 mA.

Ajuste de corriente del foco LED

A pesar de que esta corriente no varía mucho con respecto a la original (-13%), la temperatura de funcionamiento del LED se reducirá bastante… pero también caerá de forma exponencial el rendimiento lumínico del diodo LED.

Rendimiento lumínico

Después de reparar el foco y modificar su  corriente de funcionamiento, realizo una prueba comparativa del rendimiento lumínico. Esta medida de luminosidad no sirve para conocer el valor real en lúmenes del foco LED, pero nos permite conocer la relación que existe entre el valor de la reducción de corriente y su pérdida de luminosidad.

Rendimiento lumínico

Como podemos apreciar en la imagen anterior, al reducir la corriente del LED en un 13%, el rendimiento lumínico se ha reducido en un 50%.

 

 

Foco LED mal diseñado, ¿estafa? – Spotlight LED bad designed, scam?

Avería de un foco LED de 12V/15W, después de un mes de uso normal. Se desmonta la matriz LED con el fin de conocer el motivo de su corta duración. Como esta es la segunda vez que se quema un LED de la matriz, se realiza un análisis a fondo de su construcción, detectando que tiene un fallo de diseño. Al final se sustituye la matriz LED original por 4 diodos LED SMD de 1W de tipo CREE. Finalmente se realizan medidas comparativas de consumo y rendimiento lumínico, comparando el foco reparado con otro nuevo igual que el averiado.

¿Cómo funciona un foco LED?

Construcción de la matriz LED

El diodo LED de este foco está compuesto por una matriz de 10 diodos. Es un montaje de 5 diodos en paralelo, dos a dos, y estos 5 conjuntos montados en serie.

Interior del LED

El problema que existe con este montaje, es que el fabricante no puede emparejar los diodos que van montados en paralelo, ya que están impresos en la matriz y no van montados en una cápsula de forma independiente. En estas condiciones, es muy difícil que la corriente que circula por cada diodo sea idéntica a la que circula por el otro que va conectado en paralelo. Así siempre iluminará uno de ellos más que el otro, y tendrá que soportar una corriente mayor a la calculada. Si el fabricante no contempla esta posibilidad, y monta diodos ajustados a la corriente que ha calculado, lo normal es que acabe por quemarse alguno de los diodos.

Esquema del Foco LED

En el esquema del foco LED se puede ver que el circuito de corriente constante está ajustado para 256 mA. Así circulará una corriente de 128 mA por cada diodo. Si alguno de los diodos se quema por exceso de corriente, se abrirá, obligando al otro diodo que va montado en paralelo  a soportar los 256 mA de la serie. Como cabe suponer, este segundo diodo también se quemará y dejará de lucir toda la matriz LED.

Reparación del foco LED

En la mayoría de los casos no compensa reparar un foco LED. El precio del repuesto y la mano de obra, suele ser superior al precio de compra de un foco nuevo. A pesar de esto, si ya disponemos del repuesto y lo hacemos como hobby, es muy satisfactorio repararlo… o por lo menos intentarlo. En este caso la reparación consiste en sustituir la matriz LED. Una solución alternativa es montar una serie de diodos LED de potencia en lugar de la matriz. Como este foco está alimentado a 12V, es necesario que la tensión de funcionamiento de la serie de diodos sea ligeramente superior a 12 V. En caso contrario, el circuito de control no podría limitar la corriente y se quemarían los diodos.

LED de 1W

Si tenemos en cuenta que este foco de 15W, en realidad es de 5W, podemos obtener una luminosidad parecida montando 4 diodos LED en serie de 1W. Como es lógico, estos diodos deben estar dimensionados para funcionar con una corriente de 256 mA, ya que es la que suministra el circuito de control del foco.

Foco modificado

Para sustituir la matriz LED original por 4 diodos, hay que asegurar que el contacto térmico del conjunto con la base de aluminio sea bueno. Yo he optado por crear un bloque con los 4 diodos, utilizando masilla de 2 componentes, mas conocida como barra arregla todo. Antes de aplicar la masilla, es muy importante poner pasta térmica en la base de cada diodo LED.

Luminosidad del foco LED

Después de la reparación, decido hacer una prueba comparativa de luminosidad entre el foco reparado y otro foco LED nuevo. El resultado es favorable al foco reparado, porque el consumo es de 4W en lugar de 5W, y la luminosidad es un 16% superior a la del foco original.

 

M328-Transistor Tester

Montaje, calibración y pruebas del kit: M328 Transistor Tester, comprobador de componentes electrónicos. Este comprobador está basado en el micro controlador ATMEGA328P, el mismo que utiliza la placa de desarrollo ARDUINO Uno. El firmware de este comprobador (v1.12k de 2017) ya viene grabado y el chip protegido contra lectura, de manera que no es posible realizar modificaciones. Sin embargo, existe mucha información en Internet, incluso algunos códigos fuente válidos para este micro controlador.

Kit: M328 Transistor Tester

Proceso de montaje

Para montar este kit es conveniente tener cierta destreza con el soldador, y disponer de las herramientas adecuadas. En general, el montaje no es complicado, porque todos los valores de los componentes están rotulados en la serigrafía del circuito impreso. La única dificultad sería soldar los 3 componentes de montaje superficial (SMD) que incluye este kit.

M328 - SMD

Para facilitar el montaje, es conveniente montar los componentes más pequeños en primer lugar (SMD), y siguiendo por los de altura más baja (resistencias). También hay que prestar mucha atención a la hora de identificar las resistencias, porque están identificadas siguiendo el código de colores de 5 bandas y es fácil confundir algún valor por otro. En caso de dudas, lo mejor es medir los valores de las resistencias con un polímetro, para estar seguros antes de soldarlas.

Código de colores de las resistencias

Calibración

Una vez montado el kit, lo primero que hay que hacer es calibrar el equipo. A la calibración se accede mediante el menú Selftest del comprobador. El proceso de calibración es muy rápido y sencillo. Antes de entrar en el menú, tenemos que preparar 2 trozos de cable para unir las 3 entradas, y un condensador mayor de 100nF y menor de 20uF.  La calibración consiste en 3 pasos:

  • Calibrar el cero del medidor, uniendo las 3 entradas del medidor con 2 cables cortos. En este punto el equipo calibra la resistencia 0 ohmios en las 3 entradas del medidor.
  • Calibrar el punto ‘abierto’ del comprobador, con el equipo encendido sin componentes (quitando los cables del punto anterior). En este momento se calibra la capacidad 0pF de las 3 entradas, entre otras cosas.
  • Calibrar la escala del capacímetro. En este punto se necesita conectar un condensador mayor de 100nF y menor de 20uF, entre las entradas 1 y 3 del comprobador.

Se pueden ver todos los detalles de calibración en el video #1.

Funciones especiales

Aparte de la detección y comprobación de la mayoría de los componentes electrónicos (resistencias, condensadores, bobinas, diodos, transistores, etc), este comprobador dispone de algunas funciones especiales, por ejemplo:

  • Comprobar y medir el sensor de Temperatura DS18B20.
  • M328 - DS18B20
  • Comprobar y medir el sensor de Temperatura/Humedad DHT11.
  • M328 - DHT11
  • Decodificar las señales IR de un mando a distancia (menú IR_Decoder), mediante la inserción en sus terminales de un chip receptor IR. El comprobador muestra en la pantalla el protocolo y  todos los datos que se transmiten al pulsar cada una de las teclas de un mando a distancia IR (4 Bytes).
  • M328 - IR
  • También es posible configurar en el menú IR_Encoder el código de una tecla, y transmitirla mediante la conexión de un diodo LED IR en los terminales de salida PWM del comprobador.
  • Generar una señal PWM de 10 bit, pudiendo configurar el porcentaje del ancho de impulso entre 1 y 99%. El nivel de salida es  5Vpp, y la frecuencia 7812,5 Hz.
  • Generar una serie de frecuencias predefinidas, entre 1 Hz y 20 MHz. La forma de onda es cuadrada y  tiene un nivel de 5Vpp.
  • Medir frecuencias comprendidas entre 1Hz y 3,9MHz, con un nivel entre 1 y 5 Vpp.
  • M328 - Frecuencias
  • Medir la Resistencia Serie Equivalente (ESR) de condensadores electrolíticos, sin la necesidad de tenerlos que desconectar del circuito impreso.
  • M328 - ESR

Todos los detalles de montaje, calibración y pruebas se muestran en la siguiente serie de 3 videos: