Comprobador de diodos – Diode tester

Construcción de un comprobador de diodos, alimentado con una batería recargable. El comprobador incluye un voltímetro y un amperímetro digital, pudiendo mostrar la tensión y corriente de forma simultánea. Este medidor suministra una tensión de salida de 25V, muy útil para comprobar diodos de AT, diodos LED de potencia, diodos Zener. También se puede modificar la corriente máxima de salida, ajustable entre 1,5 y 23 mA aproximadamente, permitiendo conocer la tensión de funcionamiento exacta de un diodo, cuando trabaja con su corriente nominal.

Funcionamiento de un diodo

Para poder interpretar las medidas que muestra este comprobador de diodos, hay que conocer los principios básicos del funcionamiento del diodo que vayamos a comprobar. Algunos diodos están pensados para funcionar en modo directo, polarizados con tensión positiva en el ánodo con respecto al cátodo (diodos rectificadores, LED, detectores), y otros en modo inverso (zener).

Funcionamiento de los diodos

Todos los diodos permiten el paso de la corriente en un sentido y a partir de un umbral de tensión, pero ese umbral cambia en función del tipo de diodo. Si es un diodo rectificador de silicio convencional, el umbral es  de  0,6-0,7V; pero cuando el diodo es de alta tensión, ese umbral suele superar los 10V. Lo mismo sucede con los diodos LED, dependiendo de su potencia y características varía su tensión y corriente de funcionamiento. Para que un comprobador pueda medir cualquier tipo de diodo, es necesario que suministre una tensión alta, pero al mismo tiempo limitando la corriente máxima para evitar que el diodo supere su corriente máxima de funcionamiento y se destruya.

Detalles del comprobador de diodos

Este comprobador de diodos suministra una tensión de 25V, tensión suficiente para verificar la mayoría de los diodos. También limita su corriente de salida entre 2 y 20 mA, pudiendo seleccionar y medir la corriente mediante un potenciómetro. De esta manera se puede medir la tensión de funcionamiento de un diodo LED cuando está trabajando con su corriente nominal, y así poder calcular de forma precisa el valor de su resistencia de limitación.

Cambio de escala en el amperímetro

En este caso he utilizado un doble medidor (voltímetro/amperímetro) de tipo digital. Para poder utilizar este medidor, es necesario modificar la escala de medida de corriente. La modificación se realiza cambiando el SHUNT de medida por una resistencia de 10 ohmios. De esta manera la medida de corriente que mostrará en su display serán mili amperios (mA) en lugar de amperios (A).

Esquema

Este comprobador de diodos se alimenta con una batería recargable de 3,7V y dispone de un módulo de carga con protección TP4056. La tensión de salida de 25V se consigue mediante el módulo Step Up Converter  MT3608. La tensión de salida del comprobador está limitada por una resistencia de 1K en serie con un potenciómetro de 10K, el cuál permite modificar el valor de corriente que circulará por el diodo bajo prueba.

Esquema del comprobador de diodos

Este comprobador se comporta como una fuente de alimentación de 25 VDC con una resistencia interna alta y ajustable… funciona como una pila/batería de 25 V agotada.

Ajustes

El primer ajuste que hay que realizar en este comprobador, es subir la tensión de salida al máximo que permita el módulo MT3608. El ajuste se realiza con el potenciómetro que incluye el propio módulo, y  midiendo la tensión de salida con un polímetro.

Ajuste de tensión de salida

Después habría que calibrar el voltímetro del comprobador. Moviendo el ajuste central de la parte trasera del medidor, y ajustando el valor de tensión que muestra su display hasta conseguir el mismo valor en las puntas de salida del comprobador. Esta comprobación la haremos con un voltímetro/polímetro calibrado.

Ajuste del voltímetro

El ajuste de corriente lo haremos a un valor alto, poniendo el ajuste de corriente al máximo (20mA aproximadamente). Conectaremos un amperímetro  o polímetro (calibrado) en serie con un diodo de alta luminosidad en las puntas de salida. En este caso también se podría conectar directamente el amperímetro en las puntas de salida del comprobador… no es imprescindible conectar un diodo en serie. El ajuste de corriente de este medidor, es la resistencia ajustable que está situada cerca de los conectores.

Calibrado del amperímetro

Una vez realizados los ajustes, el comprobador ya está dispuesto para realizar medidas. En la imagen siguiente se puede ver la medida que muestra un diodo rectificador de alta tensión. Como se puede ver en la imagen, el umbral de este diodo es de 13,7V, de manera que no sería posible comprobarlo con un polímetro convencional.

Midiendo un diodo de AT

En el video siguiente se muestra todo el proceso de montaje y ajustes con más detalles.

Vúmetro RGB con ARDUINO

Construcción de un vúmetro LED RGB, controlado por Arduino. Este montaje consiste en un par de tiras RGB de un metro, con 30 LED SMD de tipo inteligente (WS2812) cada una. Este tipo de diodos incluye en su interior su propio controlador. Los diodos WS2812 disponen de una entrada de datos, la salida y los dos pines de alimentación. La información se transmite en serie, desplazando los datos de un pixel hacia el siguiente, y cada pixel utiliza 24 bit de información… 8 bit por cada color (RGB). El control de este vúmetro LED se realiza con Arduino. Micrófono amplificadoEl sonido se capta mediante un micrófono amplificado, de manera que no es necesario realizar ninguna conexión eléctrica entre el reproductor de audio y el vúmetro. Para facilitar el uso de este vúmetro en cualquier lugar, la alimentación de 5V se suministra con el módulo ‘Step Down-ConverterMP1584. De esta manera es posible alimentar este vúmetro con cualquier alimentador de continua, entre 6 y 28 voltios. Así podría utilizarse también dentro del coche, alimentado desde los 12V de la batería, y mostrar los efectos luminosos al ritmo del sonido del auto radio.

Tiras LED WS2812

Existen varios tipos de tiras LED RGB, pudiendo elegir la separación entre diodos y el grado de protección IP. Cuanto mayor sea el número de diodos LED por metro, mejor será el efecto luminoso que se pretenda mostrar (mayor resolución y brillo), pero el consumo también será mayor. Dependiendo del lugar donde se vayan a instalar las tiras LED, podremos elegir un grado de protección IP. El acabado IP67 permite utilizar estas tiras LED a la intemperie, protegiendo todos sus componentes electrónicos contra el agua y el polvo. Los consumos que se muestran en la tabla siguiente, son consumos máximos (cuando se encienden los tres colores de cada pixel a máximo brillo).

Las tiras LED WS2812 necesitan 3 hilos de conexión, 2 para la alimentación y 1 para datos. Las tiras LED se pueden cortar al tamaño que se necesite, y también se pueden ampliar juntando la salida de una de ellas con la entrada de otra. Cuando se vayan a utilizar tiras de gran tamaño, es importante conectar los hilos de alimentación con cable en varios puntos. Así se evitará la caída de tensión a lo largo de la línea, lo que provocaría un cambio de color y brillo sobre el color que se pretenda mostrar.

Conexiones tiras WS812

Descripción del circuito

Este vúmetro LED no necesita una conexión eléctrica con la fuente de sonido, facilitando así su uso y pudiendo mostrar efectos luminosos al ritmo del sonido de una sala, dentro de un coche, etc.. El sonido se capta por un micrófono de tipo ‘Electret‘, el cual se amplifica con un operacional, hasta conseguir el nivel necesario para excitar la entrada analógica del micro-controlador de Arduino ATMEGA328P .

En el esquema se muestra el montaje del micrófono y el amplificador operacional, pero también podría utilizarse un módulo SMD ya montado, el cuál se vende para el uso con Arduino, y conectar su salida de audio con la entrada A0 de Arduino. Para facilitar el uso de este vúmetro en cualquier lugar, la alimentación de 5V se suministra con el módulo ‘Step Down-ConverterMP1584.

Construcción del vúmetro

El circuito de control del vúmetro lo he montado en una placa de circuito impreso de tipo universal.

CPU: Vúmetro RGB

Posteriormente fabriqué una caja con metacrilato, haciendo la serigrafía con la CNC.

Vúmetro RGB: Módulo de control

A continuación se muestra el vúmetro LED funcionando.

Vúmetro RGB en pruebas

Firmware ARDUINO

El código de Arduino que he utilizado para este proyecto lo conseguí como un comentario en Internet. No conozco el autor del código, y por eso no figura su nombre en la cabecera. Este código, junto con la librería de control necesaria para el WS2812, se puede descargar desde el siguiente enlace: Vúmetro RGB

Baliza RGB con ARDUINO

Construcción de una baliza LED RGB, controlada por Arduino. Este montaje consiste en un anillo formado por 16 LED SMD de tipo inteligente (WS2812). Este tipo de diodos incluye en su interior su propio controlador. Los diodos WS2812 disponen de una entrada de datos, la salida y los dos pines de alimentación. La información se transmite en serie, desplazando los datos de un pixel hacia el siguiente, y cada pixel utiliza 24 bit de información… 8 bit por cada color (RGB). El control de este anillo LED se realiza de forma muy sencilla, ya que Arduino dispone de unas librerías específicas para su control y además ejemplos.

Pruebas de la baliza RGB

Esquema de montaje

El esquema de montaje es muy simple, porque este módulo se controla con un solo hilo. El montaje lo podríamos realizar utilizando una placa de desarrollo de Arduino, pero es mucho más barato montar los componentes necesarios y el micro-controlador ATMEGA328P,  una vez programado, en un circuito impreso adicional.

Esquema: Baliza RGB

A continuación se puede ver el montaje del módulo de control de esta baliza RGB, utilizando un circuito impreso de tipo universal.

CPU: Baliza RGB

Montaje: Baliza RGB

Sellado de la baliza RGB

Con el fin de poder utilizar esta baliza en la intemperie, se rellena con adhesivo termo-fundible las dos placas de circuito impreso (CPU y anillo LED).  La zona central se oscurece con pintura de color negro mate en spray. El anillo LED se protege también con el mismo adhesivo, pero sin pintarlo.

Sellado de la baliza RGB

Alimentación

Esta baliza LED RGB se alimenta con 5V. El  consumo podría ser elevado, porque cada diodo LED consumo 20 mA. a máximo brillo. Si multiplicamos esos 20 mA por los 3 diodos que contiene cada pixel RGB y luego por los 16 pixeles que contiene este anillo, podríamos tener un consumo máximo de 20x3x16 =  960 mA. Este consumo nunca lo alcanzaremos, porque esta baliza produce efectos luminosos cambiando colores, y nunca estarán todos los diodos LED encendidos a máximo brillo y al mismo tiempo. No obstante, es conveniente alimentarlo con una batería externa recargable de 5 V, más conocida como Power Bank. De esta forma dispondremos de mayor autonomía, y sólo tenemos que soldar un conector USB tipo ‘A’ en el extremo del cable de alimentación. El encendido de la baliza lo realizaremos conectando el conector USB en el Power Bank, de esta manera no es necesario intercalar un interruptor.

Conexión: USB tipo A

La librería y los ejemplos que he utilizado para realizar este proyecto, se pueden descargar desde el siguiente enlace:

https://github.com/adafruit/Adafruit_NeoPixel

Flexo LED para el automóvil… con ajuste de luz

Construcción de un flexo LED de 3W para el automóvil (12/24 VDC). El ciruito de control está basado en el módulo Set Down Converter MP1584, de alto rendimiento (90% aprox.) y puede alimentarse con 12 o 24V a través de un conector de tipo mechero. El circuito de control do tensión del MP1584 se modifica, adaptándolo a las necesidades del diodo LED que se utiliza. De esta manera es posible controlar la cantidad de luz que suministra el diodo LED (Dimmer), sin permitir que se pueda sobrepasar la corriente máxima del diodo.

Flexo LED

Construcción del flexo

Para fabricar el flexo vamos a construir una espiral con alambre o cobre, yo he utilizado hilo de cobre de 1,3 mm.  Con la ayuda de una varilla roscada de 6 mm, se arrolla el cobre, de esta manera quedará en su interior el hueco suficiente para introducir los 2 hilos de alimentación y el alambre tensor, imprescindible para dar rigidez al flexo. El espiral de cobre se protege con macarrón termo-retráctil de 10 mm.

Material para el Flexo LED

La carcasa/soporte del LED se construye utilizando un tirador de aluminio, cortándolo por la mitad para construir así una caja. Los laterales se cierran con dos trozos de metacrilato, pegados en el lateral de la tapa superior con adhesivo de 2 componentes (Araldit, Nural).

Control de brillo

Este flexo se construye con un diodo LED de 3W, el cuál funciona con una corriente nominal de 300 mA. Para conseguir que en este flexo sea regulable su luz, calculamos la tensión mínima de encendido del diodo LED y su tensión nominal de funcionamiento. El circuito de control del LED está construido con el módulo MP1584 (Step-Down Converter). Este módulo puede funcionar con tensiones de entrada entre 4,5 y 28 VDC. De esta manera el flexo puede utilizarse en vehículos de 12 y 24 V, ya que su tensión de salida no depende de la tensión de entrada.

Tensión mínima del LED

Ponemos el ajuste de tensión de salida del módulo MP1584 al mínimo y vamos subiendo la tensión de salida hasta que el diodo LED comience a iluminar (umbral de encendido). Este valor de tensión es el que utilizaremos como referencia, para calcular el valor de la resistencia con el brillo ajustado al mínimo.

Tensión mínima LED

Tensión nominal del LED

Intercalando un amperímetro entre la salida del módulo de control y el diodo LED, ajustamos la tensión de salida hasta medir los 300 mA de consumo. En este caso medimos una tensión de 10,09 voltios, y esta será la tensión máxima que debería entregar el módulo MP1584 cuando el brillo esté ajustado al máximo.

Tensión máxima del LED

Esquema

Una vez conocidos los valores mínimo y máximo que necesitamos para regular el brillo, calculamos los valores de la resistencia y potenciómetro que debemos utilizar. Sustituimos la resistencia ajustable del circuito MP1584 (150 K) por una resistencia de 68 K en serie con un potenciómetro de 20 K.

Esquema: Flexo LED

Montaje

A continuación se puede ver el aspecto del interior de este flexo LED. El circuito impreso está sujeto con cinta adhesiva de doble cara, intercalando un aislante entre el aluminio y la placa. El potenciómetro también está sujeto a la caja de la misma forma, pero reforzado con adhesivo termo-fundible.

Interior del Flexo LED

Soldando SMD-TQFP

Soldando SMD-TQFP: proceso a seguir para soldar un circuito integrado con encapsulado TQFP (Thin Quad Flat Package) de 64 pines. La separación entre pines del chip a soldar es de 0,5 mm y el hueco libre entre ellos es de 0,2 mm.

A pesar de que los componentes de tipo SMD están pensados para ser soldados a máquina en las cadenas de montaje, en todas las reparaciones o prototipos se suelen montar a mano. La tarea de soldar un componente SMD puede ser fácil o muy difícil, dependiendo de la destreza que se tenga con el soldador… aunque lo más importante es disponer de las herramientas y útiles necesarios: pinzas, soldador, estaño, flux, lupa o microscopio, etc.

Herramientas SMD

Arrastre de soldadura  (Drag soldering)

El método más rápido para soldar un circuito integrado de tipo SMD, es utilizando el método de arrastre de soldadura (Drag soldering), en el cual es muy importante disponer de Flux en gel y malla de desoldar. En un componente SMD es muy importante la calidad de las soldaduras, con el fin de evitar posibles averías mecánicas, debido a una posible caída o golpe del dispositivo. El tiempo de reparación junto con el coste del componente, siempre será superior al gasto del Flux y exceso de estaño que se emplee en la soldadura. En este montaje empleo más estaño y Flux del necesario, pero lo hago así para mostrar lo fácil que es soldar un componente SMD, aunque se hagan cortocircuitos entre los pines del componente. Siempre es mejor pasarse con el estaño, que quedarse corto y dejar las soldaduras defectuosas o frágiles.

Preparación antes de soldar

Antes de comenzar a soldar un circuito integrado SMD, es conveniente disponer de un soporte para mantener sujeta la placa. Calentar el circuito impreso antes de soldar y sujetar el componente con algún adhesivo, facilitará mucho la soldadura. El adhesivo debe ser fácil de eliminar, para facilitar una futura reparación. Utilizando un trozo de cinta adhesiva de doble cara sería suficiente.

Adhesivo SMD

Es muy importante alinear todos los pines del circuito integrado. En caso de que alguno de sus terminales esté doblado, podemos alinearlo con la ayuda de las pinzas y el filo de un cutter.

Alinear el chip

Soldadura SMD

Para evitar que se mueva el circuito integrado cuando se suelde, a pesar de que esté sujeto con cinta adhesiva, es conveniente soldar al menos un pin de cada cara del circuito integrado. De esta manera nos aseguramos que la alineación de todos los pines es correcta, y evitamos posibles cortocircuitos difíciles de eliminar cuando soldemos.

Soldar los extremos del chip

Antes de utilizar el soldador de punta ancha, tenemos que aplicar un cordón de Flux en gel en todos los pines del circuito integrado. Los terminales deben estar sumergidos en el Flux… ahorrar en Flux no es una buena idea.

Flux en gel

A continuación, con un soldador de punta ancha, aplicaremos estaño en la punta del soldador y lo arrastraremos por encima de todos los pines del circuito integrado. Cuando se arrastre el soldador, no tenemos que presionar sobre los terminales del circuito integrado. Los terminales los presionaremos después, desde el interior del circuito integrado hacia el exterior. De esta manera nos aseguramos que todos los terminales se queden apoyados en el circuito impreso y correctamente soldados.

Soldando chip SMD

Aplicando más Flux podemos eliminar los posibles cortocircuitos que hayan quedado. Si el volumen de estaño extra es mucho, aproximando la malla de desoldar se elimina con facilidad.

Malla para retirar estaño

Una vez que hayamos soldado todos los terminales del circuito integrado, haremos una revisión de las soldaduras con la ayuda de una lupa, buscando posibles defectos en las soldaduras y cortocircuitos. Cuando veamos que todo está bien, limpiaremos todos los restos del Flux con la ayuda de alcohol de limpieza, un cepillo, papel, etc.

Revisar soldaduras

La revisión final la podemos hacer aplicando luz en la cara inferior del circuito impreso, observando los posibles defectos de soldadura desde la cara superior.

En el siguiente video se muestran todos los detalles del proceso a seguir.