La plataforma de programación de Arduino es muy versátil. Al ser un sistema de código abierto, hay mucha gente que colabora y comparte sus programas. Con Arduino es muy sencillo diseñar y fabricar cualquier dispositivo electrónico a medida. Sólo hay que buscar las librerías del proyecto que tengamos en mente, y escribir unas pocas líneas de código para hacer que todo funcione según lo hemos pensado. Hace unos días me preguntaron si conocía la librería Capacitor.h, y como la mejor forma de conocer una librería es trabajar con ella, hice este capacímetro con Arduino. Como en realidad son dos librerías, he utilizado las dos dentro del mismo código.
«Capacitor.h» permite medir capacidades comprendidas entre 1pF y 100μF.
«CapacitorLite.h» utiliza menos almacenamiento de programa y funciona más rápido. Puede medir entre 0,2pF y 655pF, pero se aumenta su resolución porque entrega los valores en pFx100 (dos decimales).
El único problema es que tuve que hacer algunos puentes con cable por debajo.
Para alimentar el capacímetro utilicé una batería LiPo de 3,86V de tensión nominal, es un módulo recuperado de la batería de un PC. El largo y ancho del capacímetro lo hice en función del tamaño de la batería. La batería va alojada en la base de la caja, debajo de toda la electrónica. Para elevar la tensión de la batería a 5V, es necesario un circuito Step-Up Converter. El primer circuito Step-Up que utilicé interfería las lecturas del conversor ADC, y el capacímetro mostraba algunas medidas erróneas. Al final probé con un módulo MT-3608, previamente ajustado a 5V, y se acabaron los problemas. Para cargar la batería, utilicé el módulo de carga y protección TP-4056.
La medida de la capacidad se muestra en un display LCD de 2×16 caracteres, utilizando la librería CapacitorLite si el condensador bajo prueba mide menos de 655 pF, o Capacitor.h para mostrar capacidades hasta 100μF. El rango de la medida de capacidad se podría aumentar un poco más, pero la precisión empeora rápidamente.
Código de programación
En los comentarios de inicio del programa están los detalles de funcionamiento, y los link de acceso a las dos publicaciones de Jonathan Nethercott, donde explica con más detalle el funcionamiento de las dos librerías y su calibración.
Al principio del código se definen los pines de conexión del display LCD y los dos pines donde las dos librerías medirán el condensador bajo prueba: el pin digital 12 y el analógico 2. Para realizar la medida, la librería genera un impulso de 5V de corta duración, alrededor de 100μSeg.
Posteriormente se realiza la media de tensión en el condensador entre los pines D12 y A2, en función de la capacidad interna y la resistencia PullUp del microprocesador que se utiliza. Estos valores los define de forma automática la librería, pero se pueden calibrar para aumentar la precisión.
En el void setup() se define la velocidad del puerto serie y se genera el mensaje de presentación en el LCD y el puerto serie. También se pueden modificar los valores de calibración de las dos librerías si fuera necesario.
En el void loop() se repite el ciclo de medida de capacidad cada segundo. Se empieza midiendo la capacidad con la librería CapacitorLite.h. El valor de esta medida es en pF x 100, por lo que habría que dividir el valor obtenido entre 100 para mostrar la medida en pF, pero primero se comprueba si el valor obtenido es menor de 65.500, ya que el contador es de 16 bits y se desborda al superar 65.535. A continuación se puede ver el impulso de 5V de corta duración, que genera el pin D12 para realizar la medida de capacidad.
Si el valor de la medida fuese mayor de 655pF, se repetiría la medida utilizando la librería Capacitor.h. A continuación se pueden ver los dos impulsos que genera el pin D12, uno a continuación del otro, para realizar otra medida de capacidad utilizando la segunda librería.
Con Capacitor.h se obtienen directamente valores en pF. Mediante el código se ajustan los valores superiores a 1.000 para que se muestre en nF, y si la medida es superior a 1.000.000, se ajusta el valor a μF. Al principio de todo, se comprueba que el valor medido sea inferior a 101 μF, con el fin de no mostrar valores imprecisos en las medidas.
Al final del código se muestra la medida realizada en el LCD y a través del puerto serie, añadiendo una indicación de actividad en el display durante 300mSeg. Al final se realiza una pausa de 700mSeg. antes de repetir de nuevo el ciclo de medida.
Firmware
El código que necesitas para programar el ATMEGA-328P de Arduino, lo puedes descargar del repositorio GitHub:
La caja del Capacímetro la hice con 3 piezas, impresas en 3D con PLA de color negro. Para que destaque la serigrafía, se puede pintar con un pincel fino y pintura sintética, utilizando cualquier color que sea claro.
Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.
Este ordenador portátil es un DELL de 13″, modelo XPS P71G. Es un portátil muy fino y poco pesado con pantalla táctil. Su cierre es magnético, muy cómodo de abrir y cerrar, y además se puede plegar el teclado para utilizarlo como una tablet.
El problema que tiene es que su batería no aguanta ni una hora funcionando, y cuando era nuevo aguantaba alrededor de 5 horas. He abierto el gestor de carga del PC, y con un 72% de carga estima una duración de tan solo 24 minutos.
Batería de repuesto
He comprado una batería compatible, no es la original. Me arriesgo porque su precio es aproximadamente la mitad que la batería original, y es muy fácil cambiarla en caso de que salga mal.
La batería de repuesto es prácticamente igual que la original, y además el vendedor incluye los dos destornilladores que se necesitan para sustituir la batería, un con punta de estrella y el otro Torx.
Antes de desmontar el PC, lo primero que hay que hacer es apagarlo
Acceso a la batería
En total hay que quitar los 8 tornillos Torx del contorno, y 1 de estrella debajo de la tapa. Después hay que soltar los clip que sujetan la tapa trasera, presionando con los dedos y tirando hacia fuera, no es necesario utilizar herramientas.
En la misma batería están serigrafiados los tornillos que la sujenta, indicando su tamaño y métrica.
Comprobación de la nueva batería
Una vez montado el PC, comprobé el estado de carga de la nueva batería, abriendo el gestor de estado de la batería del sistema operativo. El porcentaje de carga era de un 66%, un valor normal en una batería nueva.
Después puse en carga al PC, para comprobar los nuevos valores que mostraba con la nueva batería cargada al máximo. El gestor del PC calcula una duración superior a 5 horas… es la duración que tenía cuando este PC era nuevo.
¿Necesitas fabricar un circuito impreso?
Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.
El Telurómetro es un equipo pensado para medir la impedancia de las tomas de tierra. Utilizan una frecuencia próxima a la frecuencia de red y sus armónicos. Hace poco, mostraba la forma de medir la resistencia de una toma de tierra con dos polímetros. Para comprobar la precisión de estas medidas, compré un Telurómetro de segunda mano.
Para comprobar el estado del Telurómetro antes de comprarlo, hice un kit de calibración con 5 resistencias de precisión, 2 de ellas de 330 ohmios, para simular la resistencia de las dos picas de control, y 3 resistencias de diferente valor para simular la impedancia de la toma de tierra, y comprobar las 3 escalas de medida del Telurómetro que iba a comprar.
Por desgracia, este Telurómetro estaba averiado. Al final lo compré al precio que podrían tener sus accesorios: el maletín de transporte, los 3 cables de medida y las dos picas… ya que no tenía nada claro que lo pudiera reparar.
¿Qué es un Telurómetro?
El Telurómetro es un equipo de medida, pensado para medir la impedancia de las tomas de tierra. Se utilizan para medir conexiones de pararrayos, edificios, instalaciones industriales, conexiones a tierra de componentes y equipos en general.
Utilizan corriente alterna para la prueba, pues la tierra no conduce bien la corriente continua.
Utilizan una frecuencia próxima, pero distinta, a la frecuencia de red y sus armónicos. De esta forma, se evita que las corrientes fantasmas o procedentes de otras fuentes interfieran con las medidas de impedancia de tierra.
Los medidores de cuatro hilos disponen de cables de generación y medida independientes para compensar la resistencia eléctrica de los propios cables. Este método permite eliminar de la medida de la impedancia de tierra el valor de la resistencia óhmica de los cables de prueba pues, en ocasiones, por tener una elevada longitud, presentan una apreciable resistencia eléctrica.
Tienen un filtro de entrada diseñado para captar su propia señal y rechazar todas las demás.
Reparación y Calibrado
Reparar un Telurómetro sin esquema ni repuestos es muy complicado, pero tuve suerte al comprobar que tenía un consumo excesivo, cerca de 500mA a 9V, aproximadamente 4,5W. Este tipo de averías se localizan fácilmente, porque lo normal es que alguno de sus componentes se caliente en exceso. En este caso, el transistor PNP que alimentaba una parte del circuito quemaba. Lo medí y estaba bien, pero tenía su salida en cortocircuito. Aunque es muy extraño, el condensador del filtro, un electrolítico de 1000uF/16v estaba en cortocircuito. Al sustituir el condensador otro nuevo, el consumo se redujo a un valor normal (70mA) y el Telurómetro ya mostraba valores más creíbles… sólo hacía falta calibrarlo.
Este Telurómetro SEW ST-1520 tiene 9 resistencia ajustables. Utilizando el kit de calibración resistivo que me había hecho, y después de hacer varias pruebas, pude asociar los ajustes a cada escala y calibrar el equipo.
Medidas con el Telurómetro
Para medir la resistencia de tierra con un Telurómetro, es conveniente aislar la pica de tierra de la instalación, y comprobar que no haya una tensión inducida superior a 10V de alterna, entre la pica de tierra (terminal ‘E‘ del Telurómetro), y la pica de potencial (terminal ‘P‘). La distancia óptima para colocar la pica de potencial es el 61,8% de la distancia total. Siendo la distancia total entre 10 y 15 metros, medidos entre la pica de tierra (terminal ‘E‘, verde) y la pica de corriente (terminal ‘C‘, rojo).
Antes de realizar la medida de resistencia, se coloca el Telurómetro en la medida de voltios; se conecta el cable verde a la pica de tierra (E) y el amarillo a la pica de potencial (P), sin conectar el cable rojo (C). Si la tensión inducida en la tierra es inferior a 10 voltios, ya se puede realizar la medida de resistencia.
Para medir la resistencia de la pica de tierra, se cambia el selector del Telurómetro a la posición de Ohmios y se conecta la pica de corriente (C), cable rojo. Al pulsar el botón de medida, este Telurómetro inyecta una señal cuadrada de 860 Hz, con una amplitud de 164 Vpp.
Luego mide la tensión existente a esta frecuencia, entre la pica de tierra (E) y la pica de potencial (P).
A partir de la tensión medida y la corriente inyectada, calcula el valor de la resistencia, y lo muestra en el display.
El Telurómetro SEW ST-1520 puede medir los valores de resistencia entre 0 y 2000 Ohmios, con una resolución diferente, dependiendo del valor y la posición del selector de medida.
Telurómetro: SEW ST-1520
El Telurómetro SEW ST-1520 mide resistencia y tensión de tierra con respecto a la puesta a tierra de la instalación. Como todos sabemos, para garantizar la seguridad de una instalación, todos los componentes de un sistema deben tener una misma tensión de referencia; por eso, la tensión y la resistencia de tierra deben ser lo más bajas posible. El Telurómetro SEW ST-1520 tiene un filtro incorporado que suprime distorsiones y mide la frecuencia de 860 Hz evitando la influencia de corrientes dispersas por frecuencias de red y sus armónicos.
Especificaciones
Rangos y resolución de resistencia de puesta a tierra:
0~20 Ω (0,01Ω)
0~200 Ω (0,1 Ω)
0~2000 Ω (1 Ω)
Tensión de tierra: 200Vca , 40~500Hz
Display LCD 3 ½ dígitos
Apagado automático después de 3 a 6 minutos de inactividad
Retención de lectura
Indicación de batería baja
Indicación de circuito abierto
Alimentación: 6 pilas 1,5 V tipo AA
Cumple normas: IEC 1010, CAT III
Medidas con el Telurómetro
Cuando hice las medidas de la impedancia de las tomas de tierra con los dos polímetros, era un día de mucho calor, y con la pica de tierra secundaria hice una medida en seco y la otra en mojado.
Para hacer las medidas con el Telurómetro coloque la pica de Corriente a 15 metros de la pica de tierra secundaria, y la pica de Potencial a 10 metros. El terreno estaba ligeramente húmedo, porque había llovido un poco por la mañana. La medida de tensión en el terreno era de 0,1V, y el valor de la resistencia 144,7 Ohmios, un valor intermedio entre las dos medidas que hice con los polímetros en seco y en mojado.
Por curiosidad hice la misma medida con la tierra de la vivienda, conectando la lengüeta de tierra de una toma de enchufe. Aquí medí un valor de 2,6 Ohmios, ligeramente inferior a la medida que hice con los dos polímetros, pero teniendo en cuenta que la anterior medida la hice con el terreno en seco.
¿Necesitas fabricar un circuito impreso?
Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.
Cuando se instalan paneles solares en la vivienda, es importante disponer de una buena toma de tierra. La estructura metálica que soporta los paneles se suele instalar en los tejados, y la carga electrostática que se genera en las tormentas podría llegar a la estructura de todos los electrodomésticos a través del cableado de tierra. Siempre que se pueda, se debería instalar una red de tierra independiente para el equipamiento de energía solar. Vamos a ver un método muy sencillo para medir la resistencia de las tomas de tierra, cuando no se dispone del equipamiento de medida adecuado (Telurómetro)… sólo necesitas dos polímetros.
Tensión del suministro eléctrico
En una central de transformación, la salida del Neutro normalmente se une con la toma de tierra, manteniendo así un potencial de 0 voltios entre Neutro–Tierra, y 230 voltios entre Fase–Neutro, o Fase-Tierra. Dependiendo de la resistividad del terreno, la distancia desde la central de transformación y la calidad de la toma de tierra de la vivienda, estas tensiones varían. Un indicador bastante bueno para saber si la calidad de la toma de tierra de la vivienda es buena, es medir la tensión entre Neutro-Tierra y entre Fase-Tierra. Cuanto más próximas sean a los valores de la central, de mejor calidad será la tierra de la vivienda.
Estado de la toma de tierra
Para hacer esta comprobación, tomaremos como referencia la tensión que tengamos en ese momento entre Fase y Neutro, aunque lo ideal sería hacer las 3 medidas a la vez.
En este ejemplo medimos 230,5 VAC. Después medimos entre Fase y Tierra, y tenemos 228,5 VAC, una diferencia de 2 V con respecto a la referencia. Ahora hacemos la misma medida utilizando la segunda toma de Tierra, y medimos 227,6 VAC. Al ser este valor más alejado a la tensión de referencia con respecto a la tierra de la vivienda, y además la tierra de la vivienda está conectada al cuadro eléctrico, no está aislada como la segunda, sabemos que la toma de tierra secundaria es de peor calidad que la toma de tierra instalada en la vivienda.
Al medir la tensión entre Neutro y Tierra, comparando ambas medidas, comprobamos que la tensión con la tierra secundaria es más próxima a 0V. Esta medida sería significativa si ambas tomas de tierra estuvieran aisladas, sin equipos conectados. En este caso podríamos interpretar que la segunda tierra es mejor que la de la vivienda, pero se podrían invertir los valores en otro momento, porque la tierra de la vivienda tiene equipos conectados que podrían estar derivando corriente, y la tierra secundaria está abierta.
Si medimos tensión entre ambas tierras, medimos 4mV, y con tensión no podemos utilizar el polímetro para medir resistencias.
Valores recomendados de resistencia a tierra
Lo ideal es que la resistencia de la toma de tierra fuera de 0 Ω, pero se consideran valores buenos entre 25 y 40 Ω, dependiendo del país y las condiciones del terreno. Cuando se trata de instalaciones sensibles, lo ideal es que el valor de la resistencia a tierra fuera inferior a 5 Ω.
Según se define en el Reglamento electrotécnico de baja tensión REBT 2002, el valor de resistencia de tierra será tal que cualquier masa no pueda dar lugar a tensiones de contacto superiores a 24V y 50V, y fija el valor medio de la resistencia eléctrica del cuerpo humano en 2.500 Ω. Teniendo en cuenta que en la instalación eléctrica se emplea normalmente como protección un interruptor diferencial de 30mA, el valor máximo de la resistencia de tierra será de 1.666 Ω para tensiones de contacto de 50V y de 800 Ω para tensiones de contacto de 24V.
Rt = 50V/30mA = 1.666 Ω
Rt = 24V/30mA = 800 Ω
Para facilitar la rápida desconexión del interruptor diferencial, es conveniente conseguir que los valores de la resistencia de tierra estén siempre por debajo de estos valores, teniendo en cuenta las condiciones cambiantes del terreno y la climatología.
El interruptor diferencial y toma de tierra
Exista o no una toma de tierra en nuestra instalación eléctrica, los interruptores diferenciales cortan el suministro eléctrico cuando se supera una corriente de fuga superior a 30mA, protegiendo así a las personas contra una posible electrocución. Disponer de una buena toma de tierra en la vivienda es fundamental para evitar descargas desagradables al tocar los electrodomésticos. Una buena toma de tierra impide el paso de corriente de cualquier aparato eléctrico defectuoso hacia las personas, disparando de forma automática el interruptor diferencial de la vivienda cuando esto ocurre.
Toma de tierra con paneles solares
Cuando se instalan paneles solares en una vivienda, se monta una gran estructura metálica, normalmente en los tejados. Para proteger los inversores, encargados de convertir la tensión continua de los paneles en tensión alterna, para luego inyectarla en paralelo con la instalación eléctrica, se instalan descargadores de sobretensión en las tomas de conexión con los paneles. Así se evita que entren picos de tensión en el inversor cuando hay tormentas… pero estos descargadores también hay que conectarlos a una toma de tierra.
Si conectamos la estructura metálica de los paneles y los descargadores a la toma de tierra de la vivienda, cuando la toma de tierra de la vivienda no es muy buena, parte de esas descargas eléctricas se distribuyen por el mismo cable hacia todos los enchufes, llegando así a la estructura metálica de todos los electrodomésticos.
Si queremos evitar que esto suceda, lo mejor es instalar una toma de tierra auxiliar, independiente de la toma de tierra de la vivienda. Conectando ahí todas las tierras del equipamiento de energía solar. De esta forma se facilita el paso eléctrico de cualquier descarga eléctrica hacia la nueva pica de tierra, y se impide así que entre parte de esa tensión hacia la estructura de los electrodomésticos.
Medida de tierra con dos polímetros
Aunque existen equipos de medida específicos para medir el valor resistivo de las tomas de tierra (Telurómetro), también es posible hacer esta medida con gran precisión utilizando un voltímetro junto con un miliamperímetro de corriente alterna.
Midiendo los valores de tensión y corriente de forma simultánea, se puede calcular el valor de la resistencia aplicando la Ley de Ohm. Como la precisión de esta medida dependerá de la tolerancia sumada de dos instrumentos de medida diferentes, es aconsejable utilizar dos polímetros de calidad.
IMPORTANTE
Para hacer medidas en la red eléctrica es necesario tener muy claro lo que se está haciendo, porque siempre existe el riesgo de electrocución. Es muy importante utilizar gafas y guantes de protección y seguir un orden, en este caso:
Seleccionar las medidas tensión/corriente y sus escalas en los polímetros
Interconectar el cableado de ambos medidores, y no tocar los selectores de los polímetros cuando estén conectados a la red eléctrica.
Conectar el sistema de medida con la red eléctrica, y tomar una fotografía en la que se vean con claridad los valores de tensión y corriente de ambos medidores.
Nunca se deberían hacer este tipo de medidas en la entrada de la acometida eléctrica, y tampoco se debería manipular el cableado eléctrico sin disponer de una protección diferencial.
Resistencia entre dos tomas de tierra
Hacer esta medida en una vivienda no tiene mucho sentido, pero la hice para saber si la pica de tierra de la vivienda está alejada de la otra o no. Las pruebas las hago alimentando una bombilla de filamento de 230V / 100W, y haciendo circular la corriente entre ambas tomas de tierra. Midiendo la caida de tensión entre ambas tierras y la corriente que circula, aplicando la Ley de Ohm obtenemos el valor de resistencia entre ambas tomas.
No es buena idea hacer este tipo de pruebas sin tomar medidas de precaución, y sin estar seguro de lo que se hace. Por otra parte, esta prueba no se puede hacer inyectando tensión de la red eléctrica, porque saltaría el diferencial, y NUNCA se deberían manipular los cableados antes de dicha protección.
Para hacer esta medida he utilizado un inversor de red de onda modificada de 2000W, alimentado con una batería de coche. He montado todo el circuito conectando el cableado del polímetro para medir la caída de tensión entre ambas tomas de red, y la pinza amperimétrica para medir la corriente. Después he conectado el interruptor del inversor un instante, el tiempo que me ha tomado hacer la fotografía.
La fotografía de la izquierda es la referencia, conectando la tensiín del inversor directamente a la bombilla. Como vemos el inversor entrega 209,5 voltios y circula una corriente de 0,31A. Al ser algo baja la tensión de alimentación, la bombilla está consumiendo 65W en lugar de 100.
En la fotografía de la derecha vemos que hay una caída de tensión de 74,9 voltios entre ambas tomas de tierra, y circula una corriente de 0,25A. Por lo tanto la resistencia entre ambas tomas de tierra es de (74,9/0,25) 299,6 Ω. Aunque sigo sin saber dónde está montada la pica de tierra de la vivienda, con esta medida entiendo que está lo suficientemente lejos de la nueva toma de tierra.
Medir la resistencia de una toma de tierra
Para medir la resistencia de las dos tierras de forma individual, vamos a provocar una fuga de corriente entre Fase y Tierra, mediante una resistencia de valor conocido. Como la suma de corriente de fugas de todos los equipos conectados a la instalación eléctrica tiene que ser inferior a 30mA, siempre que la instalación no esté al límite podremos añadir una corriente de fuga adicional próxima a 10mA, y así ya tenemos una buena resolución en la medida de corriente. Si al hacer las pruebas ‘saltara’ el diferencial, bajando los magnetotérmicos de todos los electrodomésticos se desconectan sus filtros de red, y se reducirá notablemente la corriente de fugas en toda la instalación.
Procedimiento de la medida
Esta prueba la hago con dos resistencias de potencia, cerámicas de 15 KΩ, montadas en serie. Con 30 KΩ se producirá una corriente de fuga de 7,66 mA a una tensión de 230 voltios. Para hacer esta medida es importante utilizar resistencias de potencia, con el fin de evitar que aumente su valor resistivo al paso de la corriente y nos falseen las medidas.
Cada vez que realicemos una medida, tomaremos como referencia la tensión entre Neutro y Tierra antes de conectar la resistencia entre Fase y Tierra. Este valor lo tendremos que restar del valor que midamos después de conectar la resistencia. Si el polímetro que utilizamos dispone de un botón de referencia (REL), lo pulsamos antes de conectar la resistencia y el display mostrará 0V. De esta forma evitamos tener que hacer la resta, porque la medida de tensión que muestre el polímetro cuando conectemos la resistencia será la diferencia entre ambas medidas.
Para hacer esta medida es imprescindible aislar la tierra y desconectar todos los disyuntores que nos sea posible en el cuadro eléctrico, con el fin de reducir la carga de corriente del hilo del Neutro al máximo, y evitar posibles fluctuaciones de tensión entre Neutro y Tierra cuando estemos haciendo las medidas.
Toma de tierra de la vivienda
Después de pulsar el botón REL del voltímetro, al conectar la resistencia entre fase y la tierra de la vivienda, medimos 0,1V entre Neutro y Tierra y una corriente de 7,51 mA. La tierra de la vivienda mide: 0,1V/7,51 mA = 13,3 Ω
Toma de tierra secundaria, en seco
Ahora quitamos de los polímetros la tierra de la vivienda, conectamos la otra y volvemos a pulsar el botón REL del voltímetro. Al conectar la resistencia entre Fase y la segunda Tierra, medimos 1,787V entre Neutro y la Tierra 2 y una corriente de 7,45 mA. En seco, la segunda tierra mide: 1,787V /7,45 mA = 239,8 Ω
Toma de tierra secundaria, en mojado
Después de mojar la pica de la segunda toma de tierra, al conectar la resistencia entre Fase y Tierra, medimos 0,636V entre Neutro y Tierra una corriente de 7,45 mA. En mojado, la segunda tierra mide: 0,636V /7,45 mA = 85,3 Ω
Observaciones
Al tratarse de una pica de tierra de tan solo 60 cms, y además dentro de un bloque de hormigón, al mojar la toma de tierra ha bajado notablemente el valor de su resistencia. A pesar de que ambos valores son altos, se mantienen por debajo de 800 Ω y se cumple con las especificaciones del reglamento de baja tensión para tensiones de contacto de 24V.
¿Necesitas fabricar un circuito impreso?
Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.
Hace casi dos años hice un transmisor de DCF77 con un módulo ESP32, y lo acoplé dentro de otro transmisor que había hecho con anterioridad con Arduino. Ahora voy a montar otra versión del mismo transmisor DCF77, reduciendo al mínimo su tamaño y sin eliminar sus prestaciones.
En la versión 2 del transmisor DCF77 con ESP32, he quitado el segundo controlador de Arduino, ya que sólo servía para complementar la información que muestra el display OLED. Pero he utilizado un trozo del PCB de ese transmisor, el que contiene los componentes del amplificador, y mediante 3 hilos lo he conectado con el módulo ESP32: los 2 hilos de alimentación y el hilo de salida DCF77 ya modulado. La salida de los impulsos DCF77 no se utiliza, pero se puede utilizar para hacer medidas.
Para comprobar que se está transmitiendo la señal por el amplificador, he montado un LED SMD en serie con una resistencia limitadora, en paralelo con el condensador de 1nF del circuito resonante de salida, la antena transmisora. La resistencia limitadora del LED la he puesto bastante alta, de 3k9, con el fin de que no se reduzca el nivel de RF radiado.
Nivel de salida DCF77
Con el fin de comprobar el correcto funcionamiento del amplificador de salida, y medir el nivel de tensión pico a pico de la portadora DCF77 (77,5 kHz), he conectado las puntas del osciloscopio en paralelo con la bobina del amplificador (antena). La punta de referencia del osciloscopio (GND) la he conectado a la toma de la bobina que va conectada a la alimentación de +5V, ya que para la señal de RF el +5 es lo mismo que el GND. Así en las medidas del osciloscopio, la referencia GND que muestre se corresponderá con la tensión +5 del amplificador.
El osciloscopio debería funcionar con batería, o estar aislado de la tensión de la red eléctrica
Analizando la gráfica que muestra el osciloscopio, la amplitud de la señal DCF77 ocupa 3 cuadros X 5V = 15Vpp. Se puede observar que desde el punto de referencia del osciloscopio (1→ de la izquierda) hacia abajo hay un cuadro = 5V, justo la tensión a la que está alimentado el amplificador. Al estar funcionando el amplificador en Clase C (se polariza con la señal de RF) el transistor deja de conducir cada segundo durante 100 o 200ms, dependiendo si se transmite un CERO o UNO lógico. En la imagen se muestran dos segundos consecutivos (10 divisiones de 200ms), con dos intervalos sin portadora de 100ms = dos ceros lógicos. La medida que muestra a la derecha la pantalla del osciloscopio de 10V, es la tensión ‘extra’ que produce la bobina de 4mH junto con el condensador de 1nF al estar en resonancia a la frecuencia de 77,5 kHz.
El archivo que necesitas para programar el ESP32, lo puedes descargar de forma gratuita desde el siguiente enlace: DFC77_ESP32_JR.rar
Caja 3D (ESP32+Display)
El fichero .stl que necesitas para fabricar esta caja, lo puedes descargar desde el siguiente enlace: DCF77 transmitter with ESP32 (v2)
¿Necesitas fabricar un circuito impreso?
Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.
En la actualidad la iluminación LED es la tecnología más eficiente, y además sus precios han bajado notablemente. Ahora se puede comprar un tubo LED de 16W, equivalente a un tubo fluorescente de 36W, por 6€ aproximadamente. Con este cambio el consumo eléctrico se reducirá en más del 50%, se eliminará el parpadeo de 100 Hz (doble de la frecuencia de red) que producen los tubos fluorescentes, y además su encendido será inmediato. También se evitará el riesgo de que se rompa el tubo cuando está encendido, y se contamine el aire con el vapor de mercurio de su interior. También he modificado el haz luminoso del tubo LED, ya que los tubos fluorescentes iluminan los 360 grados y los LED sólo 180.
El objetivo es iluminar un poco el techo, y reforzar el haz luminoso en la vertical del tubo con una luz blanco día, dejando el resto de la estancia iluminada con luz más cálida (4000K). Para conseguir esto, he montado 2 barras LED recuperadas del Backlight de un TV LED averiado.
Los tubos LED se pueden clasificar en dos tipos, dependiendo de su conexión con la red eléctrica. Cualquier tubo LED podría conectarse a un soporte de tubo fluorescente sin tener que abrir la carcasa para modificar el cableado, pero su adaptación varía dependiendo del tubo LED que se vaya a montar. A pesar de que los tubos LED muestren un terminal con la letra F (Fase) y el otro con la letra N (Neutro), no importa si se cambia la polaridad. Si se decide abrir el soporte del tubo fluorescente para eliminar la reactancia y el cebador, es conveniente mantener el código de colores del cableado, utilizando siempre el color azul para el Neutro y nunca para la Fase.
REACTANCIA: No es imprescindible eliminar la reactancia. La reactancia (bobina) produce una componente reactiva +j, y compensa el coeficiente reactivo -j que producen los driver de corriente constante que alimentan los LED del tubo, reduciendo así la potencia reactiva consumida y como consecuencia la corriente que circula por los cables.
CEBADOR: Dependiendo del tipo de tubo LED, habrá que eliminar o sustituir el cebador.
1 – Alimentación por ambos laterales del tubo
Para conectar este tipo de tubo LED al soporte de un tubo fluorescente, es necesario desconectar el cebador. Con la reactancia y sin cebador, ya se encendería el tubo LED. Si se quisiera eliminar la reactancia y rehacer el cableado:
Abrir la carcasa del tubo y desconectar todo: cableado, reactancia, cebador y el condensador de compensación de energía reactiva (si lo tiene).
Unir los dos contactos de conexión, en ambos casquillos del lateral y conectar un cable en cada extremo.
Conectar ambos cables a la alimentación de la red eléctrica, Fase y Neutro. No es necesario respetar la polaridad de los cables.
2 – Alimentación por un solo lateral
Estos tubos LED son muy fáciles de sustituir, siempre que se siga el proceso que indican los fabricantes, y sin hacer caso a algunos tutoriales que se publican en Internet. Los tubos LED que llevan las dos conexiones en un lateral incluyen un cebador, que en realidad es un fusible. El proceso de sustitución es muy rápido y sencillo, porque no es necesario desmontar la carcasa.
Desconectar el tubo fluorescente y el cebador.
Conectar el cebador LED (fusible) y el tubo LED, sin importar la polaridad
En caso de necesidad se podría montar de nuevo un tubo fluorescente, sustituyendo el cebador LED (fusible), por un cebador convencional
Características de los tubos LED
La ventajas principales de un tubo LED frente a un tubo fluorescente son las siguientes:
Ahorro del consumo eléctrico >50%
Encendido inmediato, sin parpadeo
Se evita el efecto estroboscópico de los tubos fluorescentes (100 Hz)
Tiempo de vida muy superior al de un tubo fluorescente
Se evita el riesgo de respirar vapor de mercurio, en caso de rotura del tubo
El único inconveniente de los tubos LED es que su haz de luz es de 180º, en lugar de los 360 de los tubos fluorescentes. Los tubos LED suelen llevar una marca a lo largo del tubo, normalmente una línea blanca, indicando la zona donde no iluminan. La única precaución que hay que tomar a la hora de colocar un tubo LED, es girarlo en el sentido que queda la línea blanca orientada hacia el techo.
Modificar el haz luminoso de un tubo LED
Al sutituir el tubo fluorescente por otro LED, el techo quedará muy apagado. Con el fin de ampliar el haz de luz del tubo LED hacia el techo y modificar la temperatura de color por zonas, he montado en los laterales del soporte dos barras LED, recuperadas del Backlight de un TV LED averiado. Cada barra contine 9 LED SMD blanco día, con un lente difusor muy eficiente y direccional en la zona vertical.
Las dos barras LED las he pegado con cinta adhesiva de doble cara, en los laterales largos del soporte de chapa. Los cables de alimentación entran por el agujero donde estaba alojado el cebador del tubo fluorescente, y se conectan en paralelo al driver LED de corriente constante que he ajustado a 220mA (2x 110mA). El driver de corriente constante lo montado dentro del soporte, donde estaba alojada la reactancia del tubo fluorescente.
Driver de corriente constante
Los LED utilizados en iluminación deberían estar alimentados con fuentes de corriente constante. De otra manera, las fluctuaciones de tensión en el suministro podrían ocasionar bajos rendimientos lumínicos cuando cae la tensión, o averías prematuras cuando se producen picos de sobretensión.
La corriente de funcionamiento de los driver no es ajustable, viene prefijada de fábrica y hay que elegirla en función de la corriente de trabajo y el número de LED en serie que se utilicen. En este caso, he comprobado que las barras LED que voy a montar iluminan muy bien con una corriente de 110 mA, y además no se calientan nada. Como es lógico, si los LED los hacemos funcionar por debajo de su corriente mínima aconsejable, se calentarán menos y aumentará su vida útil.
Aunque la corriente de trabajo de un driver de corriente constante no tenga ajuste, se puede modificar sustituyendo el valor de alguno de sus componentes. Casi siempre, el ajuste de corriente lo determina el valor de una resistencia. En el driver que he utilizado, la modificación consiste en sustituir la resistencia Rs1 de 0,62 Ohmios (SMD), por otra de 0,89 Ohmios que he hecho a medida con hilo de Nicrom. Como las dos barras LED son idénticas y las voy a conectar en paralelo, la corriente del driver LED la he ajustado al doble (220 mA).
Tubo LED con reactancia y sin ella
Aunque los tubos LED no necesitan una reactancia (balasto) para funcionar, cuando vamos a sustituir un tubo fluorescente por LED, tenemos la opción de dejar la reactancia o quitarla. Para comparar el comportamiento de un tubo LED con reactancia y sin ella, hice unas medidas.
Como podemos comprobar en las medidas, la corriente que circula por los cables es mayor sin la reactancia, porque su inductancia estaba compensando la reactiva C que producen todas las fuentes conmutadas, en este caso el driver de corriente constante que alimenta el tubo LED.
La reactancia del tubo fluorescente corrige en parte la energía reactiva de un tubo LED, reduciendo la corriente que circula por los cables.
Destellos de los LED con la luz apagada
Al sustituir las bombillas de filamento o fluorescentes por otras de tipo LED, debido al bajo consumo de los LED, en algunas ocasiones con el interruptor abierto (luz apagada) se producen destellos de luz de forma cíclica. Este efecto se produce por una pequeña fuga de corriente de la instalación hacia la lámpara LED. Esta fuga se origina casi siempre en los interruptores de encendido, ya sea por estar defectuosos (falta de aislamiento) o porque incluyen algún tipo de iluminación en su mecanismo. Si el interruptor tiene algún tipo de iluminación, la solución más rápida sería sustituir el interruptor por otro sin luz. También se podría poner una carga resistiva en la conexión de red de la bombilla LED, por ejemplo una bombilla de filamento de pequeño tamaño y potencia. Al aumentar la carga a la salida del interruptor, la corriente de fuga del interruptor se repartiría entre la bombilla y el driver LED; y esa corriente ya no sería suficiente para que la fuente de alimentación del driver LED consiguiera alimentar a su circuito PWM.
¿Necesitas fabricar un PCB?
Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.
Ahora también puedes encargar trabajos 3D, mecanizados con CNC y fabricación de cajas metálicas o de plástico inyectado.
Construcción de un brazalete LED con batería recargable, de larga duración. El brazalete está construido con PLA y es impermeable; se puede utilizar como peatón o ciclista, pero también sería muy útil llevarlo en el coche para utilizarlo como baliza en caso de avería.
Los ciclistas, patinadores o cualquier persona que circule de noche cerca de una carretera deberían hacerse ver. Es obligatorio llevar un elemento luminoso o retrorreflectante, como brazaletes, cinturones o linternas, para hacerse visibles a una distancia de por lo menos 150 metros.
Módulo de control LED
El control de encendido de los 6 LED de este brazalete es muy barato. He comprado un lote de 10 placas por menos de 3 dólares. Este controlador enciende los 6 LED de uno en uno de forma secuencial, no es necesario intercalar resistencia limitadoras a los LED, y funciona entre 3 y 4,5 voltios… haciéndolos así muy aconsejables para ser utilizados con baterías Li-ion de 3,7V. Hay que tener cuidado con el esquema que indica el vendedor en su web, porque los 6 LED están pintados al revés. Son los cátodos los que van conectados a las 6 salidas del PCB, como se indica en la imagen siguiente:
Esquema de montaje
Este brazalete es muy sencillo montarlo, y se compone de dos partes. Por una parte esté el módulo de control y los 6 LED, y por otra la alimentación. Para alimentar el brazalete podría haber utilizado dos o tres pilas de 1,5 voltios en serie, pero he preferido alimentarlo con una bateria de litio recargable.
Así el módulo de alimentación se compone de una batería 3,7V, el módulo de carga TP4056 con protección y el interruptor de encendido.
Descarga de las piezas 3D
Este diseño consta de 3 piezas, impresas en 3D con PLA de color blanco. El brazalete tiene 6 caras para dirigir la luz LED hacia todos los ángulos. El ajuste del brazalete con el brazo está bien para el tamaño medio de un adulto. En caso de que fuera necesario, aplicando calor al PLA -con cuidado si ya se ha montado la electrónica- se podría cerrar o abrir ligeramente el diámetro del brazalete.
Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.
Ahora también puedes encargar trabajos 3D, mecanizados con CNC y fabricación de cajas metálicas o de plástico inyectado.
Construcción de un plato giratorio, con un motor paso a paso unipolar de 5 hilos 28BYJ-48. Los platos giratorios se utilizan desde hace mucho tiempo en los escaparates como expositores, sobretodo en tiendas de relojes y joyerías. En mi caso, lo voy a utilizar para grabar algunas escenas de montajes electrónicos. Este plato puede girar en ambos sentidos con gran precisión, y a una velocidad configurable a elegir entre uno de sus 6 preset. El controlador del motor está hecho con un microcontrolador Atmega328P (Arduino). Aprovechando la gran precisión de giro de los motores paso a paso, este plato giratorio se podría utilizar como temporizador cíclico, montando levas en el plato para accionar uno o varios pulsadores.
Motores Paso a Paso
Un motor paso a paso convierte los impulsos eléctricos que recibe en sus bobinas, en movimiento de rotación, y se considera como un motor de corriente continua sin escobillas.
Un motor paso a paso funciona con tensión continua, y puede ser de casi cualquier tamaño y par. Cuando se le aplica energía en alguno de sus bobinados, da un «paso» en lugar de girar constantemente. Cada paso provoca una rotación con un ángulo especificado por el fabricante del motor, ya que depende del número de polos del motor y su demultiplicación interna.
Un motor paso a paso se comporta como un conversor Digital-Analógico (D/A), convirtiendo los impulsos digitales de tensión que recibe en giros analógicos de gran precisión. Estos motores se utilizan en cualquier dispositivo electrónico que requiera mover objetos con gran precisión: impresoras convencionales y 3D, escáner, plotter, fresadoras CNC, grabadores láser, etc.
Stepper motor 28BYJ-48
Model : 28BYJ-48
Rated voltage : 5VDC
Number of Phase : 4
Speed Variation Ratio : 1/64
Stepper Motor 5V 4-Phase 5-Wire & ULN2003 Driver Board
Stride Angle : 5.625° /64
Frequency : 100Hz
DC resistance : 50Ω±7% (25℃)
Idle In-traction Frequency : > 600Hz
Idle Out-traction Frequency : > 1000Hz
In-traction Torque >34.3mN.m (120Hz)
Self-positioning Torque >34.3mN.m
Friction torque : 600-1200 gf.cm
Pull in torque : 300 gf.cm
Insulated resistance >10MΩ (500V)
Insulated electricity power :600VAC/1mA/1s
Insulation grade :A
Rise in Temperature <40K (120Hz)
Noise <35dB (120Hz, No load, 10cm)
Control del plato giratorio
Para controlar los ángulos de giro y velocidad de un motor paso a paso, es necesario saber como mínimo el número de pasos por vuelta del motor, su tensión de alimentación y la frecuencia máxima de funcionamiento.
El motor 28BYJ-48 hace un giro completo cada 64 pasos, pero incluye una reducción de 1/64 . Como resultado tenemos 64×64 = 4096 pasos por vuelta. Como el motor se acopla al plato mediante un piñón y una corona de relación 1/7, los cálculos de giro los tendremos que calcular en función de 4096×7 = 28972 pasos por vuelta.
Al tratarse de un motor de 4 fases, es posible controlarlo en ciclos de 4 pasos. Aunque se pierda un poco de PAR, los fabricantes aconsejan hacer funcionar el motor en modo “Half Step Drive” (medio paso), haciendo los saltos menos bruscos y reduciendo su consumo.
Secuencia de 8 pasos, para mover el motor 28BYJ-48 en Half Step Drive:
Construcción del Plato giratorio
Para la construcción de este plato giratorio he utilizado el motor paso a paso unipolar de 5 hilos 28BYJ-4. Este motor junto con su driver de control, se puede conseguir por Internet por menos de 5 Euros. Al tratarse de un motor unipolar, no es necesario utilizar un driver del tipo Puente H, necesario para controlar los motores bipolares de 4 hilos.
El driver de este motor es muy sencillo, sólo necesita 4 transistores en montaje Open-Collector para suministrar la corriente necesaria a las bobinas del motor. El driver que se incluye con este motor utiliza 4 entradas-salidas del circuito integrado ULN2003, de las 7 que incluye el chip. También lleva 4 indicadores LED para señalizar cuando se está alimentado cada una de las 4 bobinas del motor.
El controlador del motor lo he montado aprovechando el PCB del Shield del programador ISP de Arduino UNO que hice hace unos años.
Sólo es necesario cortar una pista del circuito impreso, y unir 11 pines del ATmega328P con su puntos de conexión correspondiente, como si se tratase de un Arduino UNO.
En el esquema de montaje se muestran todos los puentes que hay que hacer en color rojo, así como los componentes que hay que montar, resaltados en color verde. Para alimentar todo el circuito, he utilizado una pequeña fuente conmutada de 230VAC-5VDC de 500 mA.
Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.
Ahora también puedes encargar trabajos 3D, mecanizados con CNC y fabricación de cajas metálicas o de plástico inyectado.
Se trata de un monitor de video SAMSUNG, modelo 223BW, de 21,6 pulgadas, formato 16:10 y resolución 1680×1050.
Síntomas de la avería
Cuando se conecta la alimentación aparece la imagen en la pantalla, y a los pocos segundos se apaga. Aunque se espere un rato, el monitor ya no enciende, pero el pulsador de encendido permanece iluminado. Si se apaga y enciende accionando el pulsador, al cabo de varios intentos ya funciona. Otro detalle a tener en cuenta, es que se escucha un pitido de alta frecuencia cuando se enciende la pantalla.
Teniendo en cuenta estos síntomas, es muy fácil que esta avería la esté provocondo la fuente de alimentación. El silbido que se escucha cuando se enciende el monitor lo podrían estar produciendo los transformadores de ferrita, debido a una falta de filtrado en la tensión continua que alimenta a sus transistores de potencia (circuito PWM de la fuente conmutada). Lo más probable es que tenga alguno o varios condensadores electrolíticos en mal estado, ya que este fallo es muy común en las fuentes conmutadas.
Reparación
Se desmonta el monitor, para acceder al módulo que incluye la fuente de alimentación. Nada más dar la vuelta al PCB, se observan varios condensadores electrolíticos reventados.
Se desmontan todos los condensadores visualmente defectuosos, y se comprueban los demás en el mismo PCB, con la ayuda de un medidor ESR.
IMPORTANTE: Descargar los condensadores electrolíticos antes de medirlos
Todos los condensadores electrolíticos defectuosos se tienen que sustituir por otros que tengan la misma capacidad y tensión, como mínimo. Es importante utilizar condensadores electrolíticos de baja resistencia serie (ESR), especialmente diseñados para trabajar en fuentes conmutadas. No es lo mismo absorber picos de tensión 100 veces por segundo (fuente de alimentación convencional), que hacerlo casi mil veces más rápido (fuente conmutada).
Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.
Ahora también puedes encargar trabajos 3D, mecanizados con CNC y fabricación de cajas metálicas o de plástico inyectado.
Después hice un mural de madera, y cambié los pulsadores por otros de gran tamaño, pudiendo controlar todo desde un PC mediante un software hecho a medida.
Con el software Reflejos.exe es posible controlar los tiempos, mostrar los intervalos entre pulsaciones, modificar las secuencias de los pulsadores, almacenar los tiempos de hasta 25 jugadores y mostrar su progresión mediante gráficas.
Posteriormente hice un reloj LED con tecnología SMD, diseñando los PCB’s de la CPU y los dígitos numéricos. El PCB de control del reloj lo hice pensando en una placa de desarrollo, igual que Arduino, montando conectores en todos los pines del microcontrolador. La CPU del reloj está construída con el microcontrolador AT89S52, el mismo microcontralador que utilicé en el primer Entrenador de Reflejos que hice, pero con encapsulado SMD.
En esta ocasión he actualizado el firmware del Entrenador de Reflejos y el software de control, para adaptarlos a esta nueva CPU y mejorar su operatividad. El nuevo montaje también es diferente, más enfocado a la rehabilitación y coordinación de movimientos que al juego. En este caso, los 6 pulsadores se pueden accionar con las manos y con los pies, y la conexión entre la CPU y el software de control es inalámbrica, utilizando el módulo Bluetooth HC-05.
Nuevo esquema del Entrenador de Reflejos
Este es el nuevo esquema del Entrenador de Reflejos, con todas las conexiones adaptas al PCB del Reloj:
Debido a la gran versatilidad de este PCB, en la adaptación no ha sido necesario cortar ninguna pista del circuito impreso ni hacer puentes entre ellas. Este PCB ya dispone de terminales de conexión para todos los periféricos que se necesitan conectar: los LED de señalización, los pulsadores, el display LCD y el módulo Bluetooth. El avisador acústico ya se utilizaba con el reloj, y va montado en el mismo PCB.
Para la señalización óptica de los pulsadores he utilizado 2 LED SMD blancos por pulsador, en paralelo y alimentados a 5V, intercalando en serie una resistencia limitadora de 220 Ohmios en cada LED. Así la corriente máxima de cada LED es de aproximadamente 10mA. Con el fin de proteger la alimentación frente a un posible cortocircuito en el cableado, los 5 voltios que van hacia los pulsadores se alimentan de dos hilos diferentes, cada línea alimenta 3 pulsadores, y cada uno de estos hilos limita el consumo máximo intercalando una resistencia de 22 Ohmios en serie.
Para alimentar todo el conjunto he utilizado un conector microUSB. Así es posible utilizar cualquier cargador USB que tengamos disponible en casa. El consumo máximo de todo el circuito es inferior a 200mA.
La programación y actualización del firmware del microcontrolador AT89S52 se realiza una vez montados todos los componentes en la placa, a través del conector ICSP. Lo ideal sería utilizar un programador ICSP comercial, pero si no lo tienes, podrías convertir en un momento un módulo Arduino en programador ICSP:
El módulo Bluetooth HC-05 hay que configurarlo antes de montarlo en la CPU.
Para su configuración es necesario conectarlo a través de un interface serie con un PC, y con cualquier software Terminal y mediante comandos AT configurar su modo de funcionamiento como esclavo, y la velocidad a 57600 bps. Si se quiere, también se pueden modificar el nombre del dispositivo y su PIN de acceso a la conexión. La manera más fácil de configurar todo esto es a través de Arduino, utilizando su interface de comunicaciones serie para enviar los comandos AT al módulo HC-05 y configurarlo.
Al principio del código de configuración del módulo HC-05 he anotado los comandos AT más importantes, así como el modo de entrar en modo comandos AT. Dependiendo del tipo de módulo HC-05, el acceso a modo comandos es diferente, porque algunos módulos llevan un pulsador y otros no.
Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.
Ahora también puedes encargar trabajos 3D, mecanizados con CNC y fabricación de cajas metálicas o de plástico inyectado.