Nivel de un depósito con ultrasonidos

Construcción de un medidor de nivel de líquidos para un depósito con ultrasonidos. En un depósito simétrico, dividiendo su capacidad máxima en litros entre la altura en centímetros, obtendremos el número de litros que contiene cada centímetro del líquido dentro del depósito. Conociendo la capacidad máxima del depósito, es posible medir la distancia libre de la parte superior del depósito por reflexión de los ultrasonidos en la superficie del líquido. Luego restamos esa distancia con la altura total del depósito, y así podremos calcular los litros que almacena en su interior.

Medidor de nivel por ultrasonidos, instalado en el depósito

Aprovechando el medidor de distancias ultrasónico que hice el año 2018, sólo he tenido que adaptar su código para convertir el medidor de distancia en un medidor de litros, y mostrarlos en el display.

OLED: SSD1306 ‘Fake in China’ & Sensor de proximidad para invidentes

Litros de un depósito

Para calcular el número de litros que hay dentro de un depósito simétrico, podemos medir la distancia libre de líquido, desde su nivel máximo de llenado hasta la superficie del líquido. Luego restamos esa distancia de la altura total del depósito, y la multiplicamos por el número de litros por centímetro que previamente hemos calculado en función de la altura del depósito y su capacidad máxima.

Litros en el depósito

De esta forma podemos realizar la medida desde arriba, colocando un medidor de distancia ultrasónico en alguna de las bocas de respiración del depósito. Apuntando el haz ultrasónico del medidor hacia el fondo, el sensor recibirá el eco que se refleje en la superficie del líquido. A partir de esa medida ya podemos calcular el número de litros que contiene el depósito, evitamos que el sensor entre en contacto con el líquido, y podríamos medir cualquier producto químico o corrosivo.

Funcionamiento del sensor HC-SR04

El sensor de ultrasonidos HC-SR04 tiene dos cápsulas piezoeléctrias, por una de ellas transmite un tren de impulsos inaudible (40 KHz), y por la otra recibe el eco de la señal reflejada. Dependiendo de la distancia del punto de reflexión, el eco recibido llegará con mayor o menor retardo. Tomando como referencia la velocidad de propagación del sonido en el espacio libre, con tan sólo medir el tiempo de retardo del eco recibido con respecto al origen, podremos calcular con precisión a qué distancia del sensor se encuentra el obstáculo.

Sensor HC-SR04

El sensor HC-SR04 dispone de 4 pines de conexión, 2 de ellos son para alimentar su circuito con 5VDC (Vcc/GND), y los otros dos son para realizar las medidas:

      • Trig: Un microprocesador externo envía un impulso de corta duración cada vez que necesita obtener una medida.
      • Echo: El sensor entrega un impulso de ancho variable, y midiendo su duración obtenemos la distancia a la que se encuentra el obstáculo.


    Sensor HC-SR04

Esquema

Este circuito incluye un zumbador piezoeléctrico, el cual he aprovechado en este montaje para utilizarlo como alarma acústica, y avisar cuando el nivel del líquido está por debajo del nivel mínimo que hayamos prefijado (reserva).

Esquema: Detector de proximidad

Características del depósito

Las medidas y capacidad del depósito forman parte de los parámetros de ajuste del código del programa, pudiendo así adaptar con facilidad el firmware a las dimensiones y volumen de cualquier depósito.

Ajustes del tamaño del depósito

El nivel de la reserva también se configura en el código del programa, y son los centímetros desde el fondo del depósito hasta el nivel mínimo prefijado. En función del número de litros por centímetro del depósito, podemos calcular el número de litros de la reserva. En este caso, el nivel de reserva sería: 7,41 L/cm. X 40 cms. = 296,4 litros.

Montaje en el depósito

Como este medidor es muy pequeño, lo monté en una de las bocas de respiración para el llenado del depósito, sustituyendo su tapón por un soporte que hice a medida con la impresora 3D.

Soportes 3D, para el interruptor y el sensor de medida por ultrasonidos

Para conectar el medidor ultrasónico sólo cuando lo necesite, cambié  su interruptor de encendido por un conector de alimentación. Desde el conector hice una prolongación con cable paralelo, hasta llegar al interruptor de encendido/apagado. El interruptor lo puse en la puerta de acceso al hueco donde tengo el depósito, con el fin de no tener que acercarme hasta el depósito para ver su contenido.

Test de funcionamiento

Antes de montar el sensor en el depósito, es conveniente comprobar que no hemos cometido algún error al introducir los parámetros de ajuste en el código del programa, y de paso comprobar que funciona correctamente en todo el rango de medidas.

Test del calibrado

En la imagen anterior, comprobé que el display mostraba 1000 litros a una distancia de 5 cms. La capacidad máxima de mi depósito es de 1000 litros, y la distancia entre el sensor y el nivel máximo del depósito (offset) es de 5 cms.

Firmware

El código que necesitas para programar el ATMEGA-328P de Arduino, lo puedes descargar del repositorio GitHub:

https://github.com/J-RPM/Level-of-a-tank-with-ultrasound

Soportes 3D

El soporte del medidor y su interruptor remoto los hice on PLA de color negro. Los ficheros los puedes descargar desde el siguiente link:

https://www.thingiverse.com/thing:5633438

¿Necesitas fabricar un circuito impreso?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

Logo: PCBWay

https://www.pcbway.es/

Transmisor DCF77 con ESP32 (v2)

Hace casi dos años hice un transmisor de DCF77 con un módulo ESP32, y lo acoplé dentro de otro transmisor que había hecho con anterioridad con Arduino. Ahora voy a montar otra versión del mismo transmisor DCF77, reduciendo al mínimo su tamaño y sin eliminar sus prestaciones.

Amplificador DCF77

Transmisor DCF77 con ESP32

Esquema

En la versión 2 del transmisor DCF77 con ESP32, he quitado el segundo controlador de Arduino, ya que sólo servía para complementar la información que muestra el display OLED. Pero he utilizado un trozo del PCB de ese transmisor, el que contiene los componentes del amplificador, y mediante 3 hilos lo he conectado con el módulo ESP32: los 2 hilos de alimentación y el hilo de salida DCF77 ya modulado. La salida de los impulsos DCF77 no se utiliza, pero se puede utilizar para hacer medidas.

Esquema: Transmisor DCF77 con ESP32 (v2)

Para comprobar que se está transmitiendo la señal por el amplificador, he montado un LED SMD en serie con una resistencia limitadora,  en paralelo con el condensador de 1nF del circuito resonante de salida, la antena transmisora. La resistencia limitadora del LED la he puesto bastante alta, de 3k9,  con el fin de que no se reduzca el nivel de RF radiado.

Nivel de salida DCF77

Con el fin de comprobar el correcto funcionamiento del amplificador de salida, y medir el nivel de tensión pico a pico de la portadora DCF77 (77,5 kHz), he conectado las puntas del osciloscopio en paralelo con la bobina del amplificador (antena). La punta de referencia del osciloscopio (GND) la he conectado a la toma de la bobina que va conectada a la alimentación de +5V, ya que para la señal de RF el +5 es lo mismo que el GND. Así en las medidas del osciloscopio, la referencia GND que muestre se corresponderá con la tensión +5 del amplificador.

El osciloscopio debería funcionar con batería, o estar aislado de la tensión de la red eléctricaMedida DCF77 a la salida del amplificador

Analizando la gráfica que muestra el osciloscopio, la amplitud de la señal DCF77 ocupa 3 cuadros X 5V = 15Vpp. Se puede observar que desde el punto de referencia del osciloscopio (1→ de la izquierda) hacia abajo hay un cuadro = 5V, justo la tensión a la que está alimentado el amplificador. Al estar funcionando el amplificador en Clase C (se polariza con la señal de RF) el transistor deja de conducir cada segundo durante 100 o 200ms, dependiendo si se transmite un CERO o UNO lógico. En la imagen se muestran dos segundos consecutivos (10 divisiones de 200ms), con dos intervalos sin portadora de 100ms = dos ceros lógicos. La medida que muestra a la derecha la pantalla del osciloscopio de 10V, es la tensión ‘extra’ que produce la bobina de 4mH junto con el condensador de 1nF al estar en resonancia a la frecuencia de 77,5 kHz.

Firmware

Repositorio GitHub:
https://github.com/J-RPM/DCF77-Transmitter

El archivo que necesitas para programar el ESP32, lo puedes descargar de forma gratuita desde el siguiente enlace: DFC77_ESP32_JR.rar

Caja 3D (ESP32+Display)

Caja 3D: Transmisor DCF77 con ESP32 (v2)

El fichero .stl que necesitas para fabricar esta caja, lo puedes descargar desde el siguiente enlace: DCF77 transmitter with ESP32 (v2)

¿Necesitas fabricar un circuito impreso?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

Logo: PCBWay

https://www.pcbway.es/

Reloj y Texto en display LED, con ESP32

Construcción de un display LED de reloj y texto con matrices LED. Este display se configura desde un teléfono móvil vía WiFi. La información de la fecha y hora se sincroniza a través de un servidor NTP, convirtiéndolo así en un reloj muy preciso. Este display está construido con el módulo ESP32 y 4 matrices LED de 8×8 pixel. De forma opcional, también se puede montar un segundo display OLED de 64×48 pixel (0,66 pulgadas).

Este display lo he montado con un módulo LED que ya contiene las 4 matrices, en lugar de los 4 módulos independientes que utilicé en el montaje anterior:

Reloj de precisión, configurado por WiFi

Matrices LED de 8×8 pixel

En la construcción del último reloj LED que monté, lo hice conectando 4 matrices LED de 8×8 pixel. Estas matrices llevan las conexiones de entrada y salida por la cara inferior y superior, y esto obliga a que el tamaño del reloj sea más grande de lo necesario.

Matriz LED 8x8 pixel

En este caso voy a montar otro reloj con un display LED del mismo tamaño, pero será más pequeño que el anterior. Aunque el nuevo firmware también permite utilizar un segundo display OLED, en este caso no lo voy a montar, y además utilizaré 4 matrices LED interconectadas en un sólo PCB.

PCB con 4 matrices LED de 8x8

Esquema de montaje

El montaje de este reloj es muy rápido y sencillo,  sólo hay que conectar 5 hilos entre un lateral del display LED y el módulo ESP32.

Montaje del display: Reloj-Texto

Configuración con doble interface WEB

Ahora el display LED permite mostrar la hora, o textos rotantes de hasta 255 caracteres. Tanto el modo de funcionamiento como su configuración, se programa a través de una conexión WiFi, y se guarda en la memoria EEPROM del módulo ESP32. De esta forma el reloj arranca siempre en el modo en el que se dejó la última vez: modo texto, o modo reloj.

Doble interface WEB

Esta nueva versión de firmware incluye un menú WEB con nuevas opciones,  y también animaciones cada vez que se reciben datos desde el reloj.

Firmware

El archivo que necesitas para programar el ESP32, lo puedes descargar de forma gratuita desde el repositorio GitHub: Clock-Text_ESP32

Y también desde Dropbox: ESP32_Time_Text_Matrix_JR.rar

Caja 3D (Reloj-Texto)

Caja 3D, para el PCB de 4 matrices LED de 8x8

El fichero .stl que necesitas para fabricar la caja de este display LED, lo puedes descargar desde el siguiente enlace: Clock and Text on LED display, configured by WiFi

¿Necesitas fabricar un circuito impreso?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

PCB de prototipo gratis y con plazo de entrega rápido: https://www.pcbway.es/

Logo: PCBWay

 

Reloj de precisión, configurado por WiFi

Construcción de un reloj con matrices LED, configurado desde un teléfono móvil vía WiFi. Este reloj toma la información de la fecha y hora a través de un servidor NTP, convirtiéndolo así en un reloj muy preciso. El reloj está construido a partir del módulo ESP32, acoplando un pequeño display OLED de 64×48 pixel (0,66 pulgadas) y 4 matrices LED de 8×8 pixel.

Como este reloj está creado a partir del Transmisor DCF77 que mostré anteriormente, hay mucha información de interés relacionada con el módulo ESP32  y el display OLED en el siguiente documento:

Transmisor DCF77 con ESP32

Matriz LED de 8×8 pixel

El display LED del reloj está construido con 4 matrices LED de 8×8 pixel. Estas matrices LED se pueden comprar junto a su controlador en módulos independientes, y encadenar en serie todas las que se necesiten. El circuito integrado controlador de la matriz LED, es el MAX7219.

Matriz LED 8x8 pixel

MAX7219

El CI MAX7219 permite controlar matrices de 8×8 LED de cátodo común. También puede controlar un grupo de 8 displays  de 7 segmentos, pudiendo habilitar o no su decodificador interno BCD. Este CI incluye un registro de desplazamiento, y se pueden encadenar para controlar una serie de matrices LED de 8×8, o una serie de grupos de 8 displays de 7 segmentos.

Circuito integrado MAX7219

El MAX7219 dispone una memoria SRAM para almacenar el estado de los 64 LED que puede controlar, y se encarga de realizar la multiplexación para su encendido individual, con una frecuencia de refresco típica de 800 veces por segundo a todo el conjunto. La memoria SRAM mantiene la información siempre que la alimentación no baje de 2V. La carga de datos se realiza en serie mediante el control de 3 hilos más 2 de alimentación (Data, Clock, CS, GND, Vcc)

El MAX7219 incluye un control de apagado de los LED reduciendo el consumo hasta 150µA. Tiene un control de brillo analógico y digital, un registro de límite de escaneo que permite al usuario mostrar de 1 a 8 dígitos, y un modo de prueba que fuerza el encendido de todos los LED.

La información se recibe en 2 Bytes, bits D0 – D15. El primer bit que se envía es el D15, el más significativo (MSB).

  • D0 – D7 contienen los datos
  • D8 – D11 contienen la dirección de registro
  • D12-D15 son bits sin contenido.

Esquema de montaje

El montaje de este reloj es muy sencillo, no hace falta montar ni un sólo componente electrónico, sólo los cables de conexión entre matrices y los 5 hilos entre el módulo ESP32 y la primera matriz LED.

Esquema de montaje del reloj

Configuración inicial del reloj

Este reloj necesita una conexión a Internet por WiFi para funcionar. Al arrancar se conecta a un servidor NTP para sincronizar el reloj (RTC) del módulo ESP32. A continuación ya puede funcionar de forma autónoma, y se puede configurar y controlar desde un dispositivo móvil (WiFi) y también desde un PC que tenga conexión a la misma red local a la que se haya conectado el reloj por WiFi.

La primera vez que se pone en marcha el reloj, es necesario acceder por WiFi al punto de acceso que crea el propio reloj cuando no dispone de acceso a Internet, y configurar su conexión WiFi.

  • SSID: ESP_32
  • IP: 192.168.4.1

Punto de acceso WiFiEn la imagen siguiente se muestra el diagrama de funcionamiento cada vez que se reinicia el reloj.

Diagrama de funcionamiento del reloj en el arranque

Modos de funcionamiento y ajustes del reloj

El reloj puede mostrar la fecha y hora siguiendo el estándar europeo o americano (24H/12H). También se puede personalizar el formato de la hora en dos tamaños, las animaciones de los números cuando cambian y el ajuste de brillo del display LED. Todos estos ajustes se realizan a través de una conexión a la red local que se haya conectado el reloj, ya sea por WiFi o cable. No es necesario instalar ningún software, porque el reloj incluye su propio navegador web (web browser). Conectando cualquier dispositivo a la dirección IP que muestra el reloj cuando se conecta a la red Wifi, se puede acceder al menú de control de este reloj.

Configuración del reloj por WiFi

Firmware:

El archivo que necesitas para programar el ESP32, lo puedes descargar de forma gratuita desde el repositorio GitHub:
https://github.com/J-RPM/Precision-clock_ESP32

Y también desde Dropbox: ESP32_NTP_Time_Matrix_JR.rar

Caja 3D (Reloj de precisión)

Caja 3D

El fichero .stl que necesitas para fabricar la caja de este reloj, lo puedes descargar desde el siguiente enlace: Precision clock, configured by WiFi

¿Necesitas fabricar un circuito impreso?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

Logo: PCBWay

https://www.pcbway.es/

 

 

Transmisor DCF77 con ESP32

Construcción de un pequeño transmisor de 77,5 KHz, para poder poner en hora los relojes DCF77 que no reciban correctamente la señal del transmisor de Alemania. Este transmisor es portátil, funciona con una batería de 3,7V y es muy preciso, ya que toma la información de la fecha y hora sincronizando previamente su reloj a través de un servidor NTP. Este transmisor está construído a partir del módulo ESP32, acoplando un pequeño display OLED de 64×48 pixel y 0,66 pulgadas.

ESP32 + OLED

Sistemas de sincronización horaria

Actualmente existen muchos métodos para mantener la hora exacta en cualquier dispositivo electrónico, ya sea través de un receptor GPS, o la recepción de la señales horarias en onda larga que se emiten desde diferentes países: 77,5 kHz desde Frankfurt en Alemania, 40 y 60 kHz desde Japón, 60 KHz desde Colorado en EE.UU, 66,66 kHz desde Taldom en Rusia, 68,5 kHz desde Lington en China, 60 kHz desde Anthorn en Reino Unido, o 162 kHz desde Allouis en Francia.

Cobertura DCF77

La mayoría de los relojes sincronizados por radio que se venden en Europa, utilizan la recepción de las señales horarias que envía el transmisor DCF77 desde Frankfurt, en Alemania.  Como sucede con cualquier transmisión por radio en Onda Larga, su cobertura varía en función de la distancia, climatología y el umbral de ruido electromagnético existente en el punto de recepción.

Con el fin de poder utilizar algunos relojes DCF77 que no disponen de ajuste de hora manual, hace algo más de un año publiqué una información para construir un pequeño transmisor que simulara la emisión DCF77. Este transmisor constaba de dos partes: una hardware construida con Arduino, junto con un software que funcionaba bajo Windows, encargado de suministrar los códigos de tiempo al transmisor.

Transmisor experimental DCF77

Tiempo UNIX

Tiempo Unix  se define como la cantidad de segundos transcurridos desde la medianoche UTC del 1 de enero de 1970, sin contar segundos intercalares. El tiempo que representa es UTC, pero no tiene forma de representar segundos bisiestos de UTC (por ejemplo, 1998-12-31 23:59:60).

Cualquier dispositivo que disponga de una conexión a Internet, podría sincronizar su fecha y hora con gran precisión en cuestión de segundos. Sólo es necesario  conectarse a un servidor NTP para recibir el código de tiempo, y luego introducir los comandos en una librería para que nos entregue la fecha y hora local en la zona que queramos .

D1 mini ESP32

Para hacer este nuevo transmisor DCF77, he utilizado una placa ESP32 y un pequeño display OLED de 64×48 pixel, 0,66 pulgadas. El módulo ESP32 dispone de todo lo se necesita para hacer un transmisor DCF77  completo.

Bloques ESP32
ESP32
  • Procesador de 32 bit, que permite generar la frecuencia de 77,5 kHz con mucha más precisión que Arduino.
  • Reloj en tiempo real (RTC) para gestionar el envío de los códigos de tiempo DCF77
  • Interface WiFi, para conectar a un servidor NTP y sincronizar la fecha y hora con gran precisión.

LIVE D1 mini ESP32

El módulo ESP32 es capaz de sincronizar cualquier reloj DCF77 por si solo, incluso se podría prescindir del display. Sólo sería necesario conectar un trozo de cable en el pin IO25 (antena) y acercarlo al reloj, aunque su alcance sería muy limitado.

MiniKit ES32

HW-699 0.66″ OLED display (64×48)

Con este display, además de mostrar la fecha y hora, es posible saber qué está haciendo el transmisor DCF77 en cada momento. El display  HW-699 se comunica con el módulo ESP32 mediante su interface I2C, y es posible configurarlo con dos direcciones diferentes (0x3C / 0x3D). Por defecto utiliza la dirección 0x3C, y así es como lo he utilizado para hacer este montaje.

Display OLED 0,66"

Módulo ESP32, dentro del transmisor DCF77

Aprovechando que ya tenía un transmisor DCF77 con Arduino, he montado dentro de su caja el módulo ESP32, junto con el display OLED. De esta manera aprovecho además de la caja su fuente de alimentación (batería 3,7V + StepUp 5V + módulo de carga), los indicaciones LED y el amplificador de potencia junto con su bobina de antena.

Esquema: Transmisor DCF77

Firmware:

Repositorio GitHub:
https://github.com/J-RPM/DCF77-Transmitter

El archivo que necesitas para programar el ATmega328P, lo puedes descargar de forma gratuita desde el siguiente enlace: TX_DCF77.rar

El archivo que necesitas para programar el ESP32, lo puedes descargar de forma gratuita desde el siguiente enlace: DFC77_ESP32_JR.rar

Soporte 3D (ESP32+Display)

Soporte OLED

El fichero .stl que necesitas para fabricar esta soporte, lo puedes descargar desde el siguiente enlace: DCF77 transmitter with ESP32

¿Necesitas fabricar un circuito impreso?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

Logo: PCBWay

https://www.pcbway.es/

OLED: SSD1306 ‘Fake in China’ & Sensor de proximidad para invidentes

Sensor de proximidad para invidentes

Construcción de un sensor de proximidad con Arduino, mostrando la información de la distancia en un display gráfico OLED de 0,96″. El display OLED que he utilizado es el SSD1306 y debería tener una resolución de 128×64 pixel, pero como en China ahorran por todas partes, el display muestra los gráficos con una resolución de 128×32… ¿50% de ahorro/estafa?.
Este sensor de proximidad incluye un avisador acústico, y podría ser muy útil como complemento del bastón guía para personas invidentes. En este caso no sería imprescindible instalar el display, y la autonomía de la batería sería mayor.

Medir la distancia por ultrasonidos

Utilizar un sensor por ultrasonidos para medir distancias con precisión no es lo más adecuado, pero puede ser de gran ayuda si se utiliza para detectar obstáculos cercanos. Este sensor podría utilizarse como ayuda al aparcamiento de un coche, aunque hay otros sensores más adecuados (capacitivos, ópticos), porque las cápsulas piezoeléctricas no están pensadas para trabajar en la intemperie. El uso más adecuado para este sensor sería montarlo en un equipo portátil, y utilizarlo como avisador de obstáculos cercanos para personas invidentes (podría utilizarse como complemento del bastón guía).

Sensor HC-SR04

El sensor de ultrasonidos HC-SR04 se puede comprar por menos de 1 dólar en Internet, y tiene un alcance aproximado de 4 metros y medio.

Sensor HC-SR04

Para ver la medida de la distancia he utilizado un diminuto display gráfico de 128×64 pixel, el modelo SSD1306, con  tecnología OLED.

Oled: SSD1306

Este circuito incluye un zumbador piezoeléctrico para realizar avisos acústicos de los objetos más próximos (imprescindible para invidentes).

Esquema: Detector de proximidad

El zumbador empezará a sonar de forma intermitente cuando haya objetos a partir de una distancia de 60 cms., y se irá acelerando la cadencia a medida que se acorta la distancia con el obstáculo. Este sonido intermitente se convertirá en continuo, cuando la distancia del obstáculo esté a 5 cms. o menos del sensor.

Resolución del display SSD1306

El display OLED SSD1306 que he utilizado en este montaje lo compré por Internet, y me ha llegado con ‘sorpresa’. El display incorpora un controlador gráfico de 128×64 pixel de resolución, el cuál controla el encendido de un display OLED de 128×32 pixel. Esto supone un 50% de pérdida de resolución, o visto de otra forma, es necesario enviar al display el doble de la información que va a presentar. Cuando el display muestra textos o números utilizando su font de caracteres, sólo se puede apreciar el problema cuando el tamaño de letra es 1. El problema es que si se carga un gráfico en memoria, se pierde un 50% de su resolución, y se pierde la fidelidad del gráfico por la pérdida de puntos. Observa en la imagen siguiente, que la altura en pixel de los caracteres es la mitad de la que debería ser, teniendo en cuenta que el direccionamiento del cursor si es el correcto.

Resolución SSD1306

 

El proceso que he seguido para cargar el gráfico, ha sido convertir la resolución del archivo original de 128×64 pixel a 128×32, luego corregir con un editor de dibujo los detalles más visibles (Paint o similar), y volver a redimensionar el gráfico a 128×64 pixel para poder utilizarlo en este display sin perder fidelidad.

Si utilizas un display con una resolución correcta (128×64), este último paso no lo tienes que hacer.

Programar gráficos en el display

Si quieres generar tu propio gráfico para que aparezca en el display, puedes sustituir el código del gráfico que yo he puesto por el tuyo. Para crear este código a partir de una imagen BMP,  la forma mas sencilla de hacerlo es mediante el software: LCD Assistant

Software: LCD Assistant

Firmware

El código de programación de este sensor de proximidad,  se puede descargar desde el siguiente enlace: Sensor de proximidad