Plato giratorio con motor paso a paso

Construcción de un plato giratorio, con un motor paso a paso unipolar de 5 hilos 28BYJ-48. Los platos giratorios se utilizan desde hace mucho tiempo en los escaparates como expositores, sobretodo en tiendas de relojes y joyerías. En mi caso, lo voy a utilizar para grabar algunas escenas de montajes electrónicos. Este plato puede girar en ambos sentidos con gran precisión, y a una velocidad configurable a elegir entre uno de sus 6 preset. El controlador del motor está hecho con un microcontrolador Atmega328P (Arduino). Aprovechando la gran precisión de giro de los motores paso a paso, este plato giratorio se podría utilizar como temporizador cíclico, montando levas en el plato para accionar uno o varios pulsadores.

Motores Paso a Paso

Un motor paso a paso convierte los impulsos eléctricos que recibe en sus bobinas, en movimiento de rotación, y se considera como un motor de corriente continua sin escobillas.

Motor Unipolar de 5 hilos

Un motor paso a paso funciona con tensión continua, y puede ser de casi cualquier tamaño y par. Cuando se le aplica energía en alguno de sus bobinados, da un «paso» en lugar de girar constantemente. Cada paso provoca una rotación con un ángulo especificado por el fabricante del motor, ya que depende del número de polos del motor y su demultiplicación interna.

Un motor paso a paso se comporta como un conversor Digital-Analógico (D/A), convirtiendo los impulsos digitales de tensión que recibe en giros analógicos de gran precisión. Estos motores se utilizan en cualquier dispositivo electrónico que requiera mover objetos con gran precisión: impresoras convencionales y 3D, escáner, plotter, fresadoras CNC, grabadores láser, etc.

Stepper motor 28BYJ-48

Model : 28BYJ-48
Rated voltage : 5VDC
Number of Phase : 4
Speed Variation Ratio : 1/64
Stepper Motor 5V 4-Phase 5-Wire & ULN2003 Driver Board
Stride Angle : 5.625° /64
Frequency : 100Hz
DC resistance : 50Ω±7% (25℃)
Idle In-traction Frequency : > 600Hz
Idle Out-traction Frequency : > 1000Hz
In-traction Torque >34.3mN.m (120Hz)
Self-positioning Torque >34.3mN.m
Friction torque : 600-1200 gf.cm
Pull in torque : 300 gf.cm
Insulated resistance >10MΩ (500V)
Insulated electricity power :600VAC/1mA/1s
Insulation grade :A
Rise in Temperature <40K (120Hz)
Noise <35dB (120Hz, No load, 10cm)

Control del plato giratorio

Para controlar los ángulos de giro y velocidad de un motor paso a paso, es necesario saber como mínimo el número de pasos por vuelta del motor, su tensión de alimentación y la frecuencia máxima de funcionamiento.

El motor 28BYJ-48 hace un giro completo cada 64 pasos, pero incluye una reducción de 1/64 . Como resultado tenemos 64×64 = 4096 pasos por vuelta. Como el motor se acopla al plato mediante un piñón y una corona de relación 1/7, los cálculos de giro los tendremos que calcular en función de 4096×7 = 28972 pasos por vuelta.

Al tratarse de un motor de 4 fases, es posible controlarlo en ciclos de 4 pasos. Aunque se pierda un poco de PAR, los fabricantes aconsejan hacer funcionar el motor en modo “Half Step Drive” (medio paso), haciendo los saltos menos bruscos y reduciendo su consumo.

Secuencia de 8 pasos, para mover el motor 28BYJ-48 en Half Step Drive:

Secuencia de 8 pasos, para alimentar el motor paso a paso unipolar de 5 hilos 28BYJ-48

Construcción del Plato giratorio

Para la construcción de este plato giratorio he utilizado el motor paso a paso unipolar de 5 hilos 28BYJ-4.  Este motor junto con su driver de control, se puede conseguir por Internet por menos de 5 Euros. Al tratarse de un motor unipolar, no es necesario utilizar un driver del tipo Puente H, necesario para controlar los motores bipolares de 4 hilos.

Driver para motor paso a paso unipolar de 5 hilos

El driver de este motor es muy sencillo, sólo necesita 4 transistores en montaje Open-Collector para suministrar la corriente necesaria a las bobinas del motor. El driver que se incluye con este motor utiliza 4 entradas-salidas del circuito integrado ULN2003, de las 7 que incluye el chip. También lleva 4 indicadores LED para señalizar cuando se está alimentado cada una de las 4 bobinas del motor.

El controlador del motor lo he montado aprovechando el PCB del Shield del programador ISP de Arduino UNO que hice hace unos años.

Shield programador ATmega/ATtiny (ARDUINO)

Sólo es necesario cortar una pista del circuito impreso, y unir 11 pines del ATmega328P con su puntos de conexión correspondiente, como si se tratase de un Arduino UNO.

Esquema del plato giratorio con Arduino

En el esquema de montaje se muestran todos los puentes que hay que hacer en color rojo, así como los componentes que hay que montar, resaltados en color verde. Para alimentar todo el circuito, he utilizado una pequeña fuente conmutada de 230VAC-5VDC de 500 mA.

Acceso a descargas

Firmware para cargar en Atmega328P:

Plato_28BYJ-48.rar

Caja y engranajes 3D – Thingiverse:

Turntable, with a 28BYJ-48 5-wire unipolar stepper motor

¿Necesitas fabricar un PCB?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

Logo: PCBWay

Ahora también puedes encargar trabajos 3D, mecanizados con CNC y fabricación de cajas metálicas o de plástico inyectado.

https://www.pcbway.es/

Control-Medidor de Ozono en el aire, con Arduino

Construcción de un medidor de ozono en el aire con Arduino. Al mismo tiempo, este medidor se encargará de controlar el encendido y apagado del equipo generador de ozono, manteniendo así un nivel de concentración prefijado, dentro de un compartimento destinado a la desinfección de objetos. El sensor de gas ozono tipo MQ-131, de baja concentración, permite medir concentraciones de ozono en el aire comprendidas entre 0,01 y 1 ppm.

Medidor de la concentración de ozono en el aire

 

Concentración de Ozono en el aire

El ozono es muy bueno para desinfectar locales, ropa de trabajo, mascarillas y también alimentos. Debido a la situación actual, se están vendiendo generadores de ozono de todo tipo, y muchos de ellos orientados al uso doméstico.  El ozono, al igual que cualquier producto desinfectante, hay que utilizarlo con precaución. Es importante destacar que el ozono es un gas tóxico para los pulmones. Los generadores de ozono hay que utilizarlos en sitios cerrados y sin gente dentro.

Concentración máxima de ozono en el aire durante 8 horas

El problema que tiene el ozono frente a otros productos desinfectantes, es que es muy difícil de dosificar. El ozono es un gas muy inestable y no se puede envasar, debido a que las moléculas del ozono se recombinan muy rápidamente, convirtiéndose de nuevo en oxígeno. Cuando se utiliza el ozono como desinfectante, lo más importante es calcular el tiempo que debería estar funcionando el equipo generador. Ese tiempo dependerá del valor de concentración de ozono que necesitemos alcanzar (ppm), y varía en función de los metros cúbicos desinfectar (volumen) y de la potencia del generador.

Desinfectantes

Teniendo en cuenta que la producción de ozono de un generador varía en función de la calidad del aire (temperatura, humedad…) y además depende del rendimiento de su elemento reactor, el cual se envejece y no es muy lineal; la única manera de calcular ese tiempo sería mediante un equipo de medida, que a su vez controlara el encendido y apagado del equipo generador de ozono. Este interruptor funcionaría como el termostato de una calefacción, conectando y desconectando el generador en función de la concentración de ozono en el aire que se quisiera alcanzar.

Sensores de gas MQ

MQ  es una familia de sensores de gas, orientados a medir diferentes compuestos químicos dependiendo del modelo de sensor que se utilice. Los sensores MQ están compuestos por un elemento semiconductor (óxidos metálicos) sensible a cada tipo de gas, el cuál varía su resistencia en función de la concentración de gas en el aire.

Sensores de gas de la serie MQ

Estabilidad y Precisión de los sensores MQ

Para obtener una mayor estabilidad, los sensores MQ incorporan una resistencia calefactora, lo cual supone un consumo extra y una falta de precisión en las medidas que se realicen al poco tiempo de alimentar el sensor. Otro punto importante a considerar, es que cada modelo de sensor MQ tienen alta sensibilidad a un gas específico, pero en menor medida también reaccionan o otros gases, y esto provoca una mayor imprecisión. Por ejemplo, el sensor de ozono MQ-131 tiene una alta sensibilidad al ozono, pero también es sensible a otros gases oxidantes como el cloro y el dióxido de nitrógeno.

Módulo sensor de gas ozono MQ-131

Para obtener una precisión mínima, es necesario calibrar cada sensor, y almacenar su valor de resistencia sin presencia de gas, dentro del firmware encargado de calcular las medidas. La precisión de estos sensores depende muchos factores internos y externos difíciles de controlar (temperatura de trabajo, humedad, envejecimiento del sensor), y nunca deberían utilizarse como elemento de control en lugares críticos.

Detalles del módulo sensor de gas ozono MQ-131

Con la ayuda de un controlador programado, por ejemplo con Arduino, los sensores MQ los podemos utilizar para medir la concentración de un gas determinado, dependiendo del modelo de sensor que elijamos.  Los sensores de gas MQ pueden comprarse sueltos, pero es muy común conseguirlos ya montados en un pequeño PCB, en el cuál se incluye un circuito comparador que nos proporciona una salida digital extra, además de la propia salida analógica del sensor. A través de la resistencia variable (trimmer) que incluyen estos circuitos , podríamos prefijar un umbral máximo de gas, y disparar una alarma.

Esquema genérico, para utilizar con los sensores de tipo MQ

Medidor-Controlador de Ozono

En el caso del sensor MQ-131, muy sensible al gas Ozono, mediante esta salida digital podríamos controlar el encendido y apagado de un generador de ozono. Esto sería muy útil para mantener un nivel alto de ozono dentro de un compartimento cerrado (cabina, caja, etc.) con el fin de desinfectar objetos personales, utensilios de trabajo, ropa, etc.

Esquema del Medidor-Controlador de ozono.

Descargar el firmware

El firmware que necesitas para programar el ATMEGA328P (Arduino UNO),  los puedes descargar desde el siguiente enlace:  MQ-131_JR.rar

Cubierta del sensor, impresa en 3D

La cubierta de protección del sensor gas la he fabricado con PLA. El PCB del sensor se fija a esta cubierta sin tornillos,  calentando con un soldador los 4 resaltes de PLA que sobresalen por los orificios del PCB, una vez encajado en la cubierta.

Carcasa 3D, para el sensor de gas MQ

Los archivos que necesitas para imprimir esta cubierta de protección, los puedes descargar desde el siguiente enlace: Cover for MQ gas sensor

¿Necesitas fabricar un PCB?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos, pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay. Hasta un 30% de descuento para PCBs especiales, con fabricación en 24 horas.

Logo: PCBWay
Ahora el servicio de montaje en PCBWay por tan solo 30$, con tiempo de entrega rápido: https://www.pcbway.es/

 

 

 

 

Frecuencímetro digital

Montaje y pruebas de funcionamiento de un frecuencímetro digital. Este frecuencímetro está construido a partir de un PIC16F628A, y puede medir frecuencias entre 1 Hz y 50 MHz. El frecuencímetro también incorpora en el PCB un pequeño oscilador, con un zócalo para insertar cristales de cuarzo y comprobar con precisión su frecuencia.

Frecuencímetro: PCB montado

Origen de este frecuencímetro

Este frecuencímetro se puede conseguir en KIT a través de Internet a un precio muy asequible. Existen muchas variantes de este frecuencímetro, en concreto el que he comprado yo, incluye en el mismo PCB un comprobador de cristales de cuarzo. No obstante, el corazón de este frecuencímetro es un PIC16F628A, y normalmente todos los modelos llevan cargado el firmware que desarrolló un radioaficionado de origen alemán.

Como me parece justo el destacar la autoría y origen de los diseños, a continuación os adjunto el link de acceso al frecuencímeto de Wolfgang «Wolf» Büscher, DL4YHF:

https://www.qsl.net/dl4yhf/freq_counter/freq_counter.html

Montaje del kit

El montaje de este kit es muy sencillo, a pesar la escasa información que se adjunta, y su pésima calidad de impresión. Siguiendo la serigrafía del PCB, se pueden localizar con facilidad el valor de todos los componentes.

Debido a la pésima calidad del esquema que se adjunta con el kit, he creado un esquema nuevo a partir del diseño de Wolfgang. 

Esquema: Frecuencímetro digital

Observar que en este esquema ya está modificado el circuito de entrada del frecuencímetro. He añadido un pequeño amplificador de RF, con el fin de proteger la entrada del PIC, y permitir la medida de señales de baja amplitud.

Frecuencímetro: consumo en funcionamiento

Con esta modificación el consumo aumenta alrededor de 6 mA, pero así es posible medir señales a partir de 100 mVpp, en lugar de los 2..3 voltios que se necesitarían sin el amplificador. Además, así se evita que se pueda quemar la entrada del PIC, debido a un pico de tensión inesperado. Por ora parte,  el amplificador de entrada incluye un varistor, el cual limitará la tensión de entrada a 30V, evitando así también la llegada de algún pico de tensión hacia el transistor (amplificador de entrada).

¿Necesitas fabricar un circuito impreso?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

Logo: PCBWay

https://www.pcbway.es/

 

 

Interruptor inteligente

Diseño y construcción de un interruptor inteligente, capaz de cortar la alimentación de todos los dispositivos conectados en una regleta de enchufes. El circuito detecta el consumo en una toma de red (Master), y desconecta todo (incluido el propio controlador) cuando se apaga el dispositivo conectado a la toma ‘Master’. Así en reposo (Standby), el consumo total de todo el conjunto será nulo.

Regletas de RED inteligentes

Buscando un poco por Internet, podemos encontrar regletas de alimentación inteligentes. La mayoría de ellas nos permiten conectar y desconectar la alimentación de todos los enchufes desde un dispositivo móvil, programar la hora de encendido y apagado, incluso medir el consumo y  calcular su coste.

Regletas inteligentes en Internet

El uso de regletas inteligentes podría suponer un gran ahorro energético, pero hay que tener en cuenta que estas regletas de por sí ya incorporan un consumo extra… y su circuito de control consume energía las 24 horas del día.

Interruptor inteligente

La idea de este montaje, es la de conseguir el apagado automático de una serie de dispositivos, al detectar el apagado del equipo principal (Master). Por ejemplo, si conectamos a la toma principal  de este circuito la CPU de nuestro PC,  y el resto de dispositivos (monitor, impresora, escáner, etc)  a la toma auxiliar; al desconectar la CPU se desconectaría la alimentación de todo el conjunto… incluso la del propio circuito de control. De esta manera no quedaría ningún equipo consumiendo en modo ‘Standby’, y el consumo total sería nulo.

Interruptor inteligente montado

A continuación se muestra el esquema del circuito de control, encargado de cortar la alimentación en todas las tomas de red, cuando detecte un caída de consumo en la toma ‘Master’.

Esquema: Interruptor inteligente

Las tensiones que obtendremos como muestra en la entrada del ATtiny cambiarán dependiendo de la inductancia y características del transformador que utilicemos (filtro EMI), además del tipo de carga que conectemos en la toma ‘Master’ (carga reactiva o lineal).

Principio de funcionamiento

El circuito está basado en la transferencia de tensión que aporta una de los dos  bobinas de un filtro EMI, al paso de la corriente de RED por el otro devanado.  Este montaje funciona como un transformador de corriente, entregando una tensión en el devanado secundario, proporcional a la corriente que circule por el primario. En este caso, la transferencia de tensión no es lineal con la potencia, pues dependerá del tipo de carga que conectemos en la toma ‘Master’. Si la carga se comporta como una resistencia pura,  la transferencia de tensión será menor que si tuviera una componente reactiva.

Medidas de tensión con diferentes cargas

El circuito detector de umbral está construido con Arduino, utilizando un ATtiny 85. Este pequeño micro controlador tiene sólo 8 pines y puede funcionar con un oscilador interno, lo que permite hacer uso de casi todos sus terminales.

Calibración y ajuste de los umbrales

En este montaje se han dedicado dos pines del ATtiny para poder configurar hasta 4 umbrales distintos de funcionamiento. Así podemos elegir el umbral de detección más adecuado al equipo que vayamos a conectar en la toma ‘Master’. Como es lógico suponer, los 4 umbrales los podremos calibrar y modificar con Arduino, antes de programar el ATtiny.

Ajuste y calibrado de los umbrales

Para facilitar el ajuste de los umbrales y la calibración de la escala, podemos cargar el código ‘Regleta_TEST.ino’ que se adjunta en la descarga, y utilizar la placa de desarrollo Arduino UNO. Para realizar este ajuste, colocamos un potenciómetro de 10K entre el positivo y negativo de la fuente de 5V, y conectamos el cursor del potenciómetro con la entrada A2 de Arduino UNO. El proceso a seguir para la calibración de la escala y fijación de los umbrales. se explica en el video final.

Los archivos que necesitas para programar el Arduino UNO y el ATtiny, lo puedes descargar de forma gratuita desde el siguiente enlace:

Interruptor_I.rar

¿Dónde fabricar el PCB?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos, pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

Logo: PCBWay

https://www.pcbway.es/

PCB: Interruptor inteligente

 

Acceso a los GERBER de este PCB

PCB from PCBWay

Link of my shared project

Descarga del ficheros 3D:

Intelligent switch

Diseño 3D

 

 

 

 

 

 

 

SORTEO: 3 cupones de 50$ y 100 de 10$

Sorteo de 3 cupones de descuento de 50$, para fabricar circuitos impresos en la empresa PCBWay.

Reparto de los 100 cupones de descuento de 10$, para fabricar circuitos impresos en la empresa PCBWay.

Fabricante de prototipos PCB y empresa colaboradora:

Logo: PCBWay

PCBs para todos (REGALOS)

Reparto de cupones de descuento entre los suscriptores del canal de YouTube. Con este cupón de descuento podrás mandar a fabricar tus propios diseños de circuito impreso, para conseguir un acabado profesional de tus diseños.

Entrega de cupones por valor de 10$

La empresa PCBWay patrocina la entrega de estos cupones, por valor de 10$. A pesar de que tengo muchos cupones para repartir, el número no es infinito y los entregaré siguiendo el orden de aparición de los comentarios en este video de YouTube, que siendo suscriptor muestren interés en recibir su cupón.

Requisitos

Para que pueda enviar tu cupón de descuento, es necesario que cumplas los siguientes requisitos:

  • Estar suscrito al canal de YouTube.
  • Ser de los primeros en comentar en el video, escribiendo al principio del comentario: ‘Participo‘.
  • Enviar por email una captura de pantalla de tu cuenta de YouTube, donde se vea que estás suscrito a este canal de YouTube.
  • Crear una cuenta en la empresa fabricante de circuitos impresos, para que me envíes en el mismo email tu nombre de usuario en  PCBWay.

No te olvides de incluir en el correo, el nombre de usuario que has utilizado para escribir tu comentario en el video.

Abrir una cuenta en PCBWay

El crear una cuenta en PCBWay es gratis, y además recibirás un bono de regalo por valor de 5$.

Abrir una cuenta en PCBWay

Te recuerdo que todavía tenemos un sorteo pendiente, consistente en 3 cupones de 50$, para que puedas mandar a fabricar tus circuitos impresos en la empresa PCBWay. Si no lo sabías y estás interesado en participar, echa un vistazo a este video: Nuevo PCB + Sorteo antes del 23 de Diciembre:

Logo: PCBWay

 

 

https://www.pcbway.com/

Nuevo PCB + Sorteo

Diseño de un nuevo circuito impreso con 2 dígitos de 7 segmentos, LED SMD, incluyendo los dos puntos separadores y el punto decimal. Este circuito impreso es compatible con el anterior de un sólo dígito que utilicé en el ‘Reloj SMD’. Así se pueden utilizar ambas placas en el mismo montaje y construir cualquier tipo de display, sin la necesidad de tener que pegar más diodos en el PCB.

Construye un Reloj SMD

Reloj serie con el nuevo PCB

Display de 4 dígitos

El display del último reloj que hice, estaba construido con 4 circuitos impresos  de un dígito de 7 segmentos. Cada uno del los dígitos permite el control de encendido de un punto decimal, el cuál se incluye en cada PCB. Sin embargo, este reloj utiliza además del punto decimal un separador central, formado por dos puntos LED. Como es lógico, para poder controlar 2 signos es necesario utilizar la salida del control decimal de 2 dígitos. Por otra parte, en los PCBs no estaba contemplada la posibilidad de montar los dos puntos separadores. La solución fue la de colocar 2 LED entre las dos placas centrales, pegando uno en cada tarjeta.

Pegar LED en el display

Ambos LED van conectados en serie. El ánodo de esta serie, como es el punto común, va conectado con la alimentación al +12V.

Cableado LED

El cátodo de la serie lo tuve que cablear hasta la salida de control del punto decimal del dígito anterior (el punto decimal del dígito de la izquierda no se utiliza en este reloj).

Nuevo PCB

A pesar de que la solución que tomé es válida, no queda muy elegante hacer semejante ‘engendro’ en un diseño nuevo. Al final decidí hacer otro circuito impreso, con los dos puntos además del punto decimal, y que fuera totalmente compatible con los circuitos impresos que ya tenía fabricados.

PCB: 2 dígitos de 7 segmentos

Este nuevo circuito impreso contiene 2 dígitos, y los dos puntos LED están montados entre ambos dígitos. Este circuito impreso va montado en el centro del display del reloj de 4 dígitos, ocupando los 2 dígitos centrales; y a cada lado va montada otra placa de un sólo dígito.

Nuevo display del Reloj

¿Dónde fabricar el PCB?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos, pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Por suerte, se puso en contacto conmigo el fabricante de circuitos impresos PCBWay, preguntando si quería hacer una colaboración con ellos. Lo primero que hice es visitar su página Web, y me pareció muy interesante su manera de trabajar.

Proyectos compartidos en PCBWay

https://www.pcbway.com/project/shareproject/

Esta empresa, aparte de ser grande y tener muy buenos precios, dispone de un apartado en su Web para alojar los diseños y poder compartirlos. Creo que la idea es muy buena para ambas partes. El diseñador recibe un porcentaje de las ventas que se realicen de sus diseños y el fabricante aumenta sus ventas.

Link of my shared project: 
PCB from PCBWay

Lote PCBs

Sorteo por cortesía de: PCBWay

Sorteo patrocinado por PCBWay

El sorteo se realizará el próximo día 23 de Diciembre de 2017, y habrá 3 ganadores. Cada ganador recibirá un cupón de regalo para mandar a fabricar sus propios PCB’s. Los circuitos impresos podrán ser de una o dos caras, y con un tamaño máximo de 100×100 milímetros… con transporte incluido.

PARTICIPANTES

El sorteo se realizará entre los suscriptores de este canal, que dejen un comentario en la línea de comentarios del video (YouTube). Si quieres participar, no te olvides de dejar sin marcar en tu cuenta de YouTube la casilla: ‘Mantener todas mis suscripciones en privado’ (por lo menos el día 23 de Diciembre).

Logo: PCBWay
https://www.pcbway.com/

CIRCUITOS IMPRESOS (PCB)

Archivos GERBER para fabricar este nuevo PCB, con 2 dígitos de 7 segmentos:

PCB_Display_2x7.zip

Prototipos PCB

Circuito impreso

El circuito impreso (PCB) es una parte muy importante para cualquier dispositivo electrónico. Antes de lanzar un nuevo producto al mercado, siempre es necesario comprobar el correcto funcionamiento de su circuito electrónico. En algunos casos sería suficiente comprobar el circuito en un simulador con software; sin embargo, siempre es conveniente realizar el montaje con todos sus componentes y lo más parecido posible al diseño final.

CPU: Baliza RGB

Existen muchos métodos para comprobar de forma rápida el correcto funcionamiento de un circuito electrónico:

  • Placas ProtoBoard, uniendo los componentes con cables
  • Circuitos impresos de tipo universal, realizando sus conexiones con puentes y cables soldados en el PCB.
  • Fabricación del circuito impreso, utilizando cualquier método de trasferencia y atacando el PCB con ácido.
  • Fabricación del circuito impreso con una fresadora digital (CNC)

El problema de utilizar cualquiera de estos métodos, es que nunca podremos montar los circuitos con componentes de montaje superficial (SMD). Por suerte, ahora hay muchas empresas que se dedican a fabricar circuitos impresos para prototipos y a precios muy asequibles. Como sucede en la mayoría de los casos con la electrónica, las empresas chinas son las más competitivas. El problema de realizar un pedido a China, es el largo tiempo que tenemos que esperar para recibir el prototipo, sumado al alto precio de sus envíos. Sin embargo, buscando por Internet siempre puedes encontrar alguna oferta. Ahora, como la empresa JLCPCB tiene una oferta muy interesante, la voy a aprovechar para encargar algunos circuitos impresos.

PCB: Display 7 segmentos serie

¿Quién es JLCPCB?

JLCPCB es una de las empresas de prototipos de circuitos impresos (PCB) más grandes de China, especializada en la fabricación de prototipos y producción de circuitos impresos en pequeños lotes. JLCPB cuenta con una experiencia de más de 10 años, trabajando para grandes empresas y aficionados a la electrónica.

¿Qué nos ofrece JLCPCB?

  • Una especial oferta en el primer pedido. Por tan sólo 2$ podemos obtener un lote de 10 PCB para fabricar nuestro primer prototipo a doble cara, y con acabado profesional.
  • Respuesta muy rápida en la fabricación, hasta 24 horas.
  • Envíos rápidos, entre 3 y 6 días si se utiliza el envío con la empresa DHL
  • Encargos Online, los pedidos se pueden hacer desde el mismo PC que utilizamos para el diseño del PCB, subiendo los archivos Gerber por Internet a su Web: https://jlcpcb.com/
  • Respuesta rápida ante cualquier problema o asesoramiento técnico.
  • JLCPCB forma parte del grupo de empresas: Integrated Electronic Engeneering Service

Integrated Electronic Engeneering Service

  • JLCPCB: Fabricación de prototipos PCB
https://jlcpcb.com/
https://jlcpcb.com/
  • EasyEDA: Software Online y libre para el diseño de circuitos impresos (PCB)
https://easyeda.com/
https://easyeda.com/
  • LCSC: Suministro de componentes electrónicos
https://lcsc.com/
https://lcsc.com/

Realizar un pedido a JLCPCB

Si estás interesado en realizar el pedido de tus circuitos impresos a la empresa JLCPCB, echa un vistazo al siguiente video:

Luz Rítmica, con fuente capacitiva

Control de luz al ritmo del sonido, integrando el circuito de control dentro del soporte de una lámpara. Se construye un circuito de pequeñas dimensiones, alimentado directamente de la red eléctrica con una fuente capacitiva. La detección del audio se realiza mediante un pequeño micrófono, incorporado en el propio circuito. De esta manera no es necesario realizar una conexión entre el equipo de música y la lámpara… sólo es necesario conectar la lámpara a la red eléctrica.

Esquema de montaje

Esquema: Luz Rítmica

El circuito de control de la luz rítmica lo podemos dividir en tres partes:

  1. Fuente de alimentación capacitiva
  2. Amplificador de audio
  3. Control de encendido

Fuente capacitiva

La alimentación de 5V se consigue directamente de la red eléctrica mediante una fuente capacitiva, sin aislamiento galvánico, lo que implica un riesgo de electrocución si se manipula el circuito cuando está funcionando.

Medida de la fuente 5V

El uso de una fuente capacitiva permite realizar este circuito de pequeñas dimensiones, permitiendo integrar todo el conjunto de control dentro del soporte de la lámpara. Los detalles de funcionamiento de esta fuente de alimentación se detallan en la siguiente entrada del blog:

Interruptor táctil con fuente capacitiva

Amplificador de audio

Este circuito no necesita estar conectado con un equipo de música, el sonido se toma a través de un pequeño micrófono incorporado en el PCB. El sonido captado por el micrófono se amplifica para conseguir el nivel suficiente para encender el diodo LED del Opto-Triac (MOC3020). Se utiliza el amplificador operacional LF356, aunque podría utilizarse cualquier otro equivalente, siempre que funcione con 5V. Para evitar una posible realimentación durante el encendido de la lámpara, por inducción entre  los impulsos de salida de alimentación y la entrada del micrófono, se monta un condensador de 1nF entre el pin de salida y la entrada «-» del amplificador operacional.  El condensador limita la respuesta del amplificador a altas frecuencias, limitando así su respuesta por inducción.

Control de encendido

El umbral de encendido de la lámpara se ajusta modificando el valor de la resistencia limitadora del LED (1K) del Opto-Triac (MOC3020).  El umbral de encendido variable, permite adaptar los destellos de la lámpara con el  nivel de sonido capatado por el micrófono.

Ajuste del umbral

Para el montaje de la placa de control se utiliza un PCB de tipo universal, lo que permite ir acomodando los componentes al tamaño del hueco donde irá instalado.

PCB luz rítmica

El circuito de control se fija con adhesivo termo fundible al soporte de la lámpara. Para evitar que el adhesivo entre en contacto con los componentes electrónicos, antes de pegar la placa de control, se protege con cinta adhesiva Kapton.

PCB dentro del soporte

Todos los detalles de este montaje, se muestran en el siguiente video:

 

 

 

 

 

Termostato de precisión #1

Construcción de un termostato digital, para controlar temperaturas con una precisión de 0,1ºC. Este termostato utiliza el sensor DS18B20, está controlado con el microprocesador AT89S52, y permite regular temperaturas entre -40 y +100ºC. También es posible controlar de forma simultánea los dos circuitos de un climatizador, el de frío y calor. Este termostato podría utilizarse como climatizador en un automóvil, controlar la temperatura de un edificio, la del agua de una piscina, incluso la de una incubadora. En esta primera parte, se muestra el diseño y construcción del termostato.

Descripción de funcionamiento

Este termostato permite calibrar su sensor de temperatura (DS18B20) en saltos de 1ºC, permitiendo un Offset entre -5 y +4ºC sobre el valor medido. Este valor de calibrado, junto con el valor de temperatura de referencia del termostato, también configurable mediante los pulsadores, son almacenados en la memoria RAM del propio micro controlador (AT89S52). Para evitar la pérdida de dichos valores en caso de perder la alimentación mientras está funcionando, el circuito incorpora una pequeña batería recargable de 3,6V Ni-MH.

Esquema: Termostato de precisión

Salidas de control

El termostato permite controlar los dos circuitos de  un climatizador de forma simultánea, el circuito de frío y el de calor. El micro controlador dispone de 2 salidas con estado lógico ‘0’ y otras 2 con estado lógico ‘1’. De esta forma es posible conectar cualquier driver en sus salidas. En este circuito he utilizado un módulo compuesto por 2 relés de 5V, de disparo con estado lógico ‘0’ y entradas optoacopladas (ver imagen).

2 Relay Module

Power Down Mode

La activación del ‘modo apagado’ (Power Down) del micro controlador permite minimizar al máximo su consumo. La detección de dicha caída de tensión se realiza mediante la lectura del nivel lógico 1/0 en el pin 39 (P0.0) del micro controlador. A pesar de que se podría simplificar el circuito intercalando una resistencia entre dicho pin (P0.0) y la entrada +5V, es mucho más eficaz entregar un nivel lógico en su entrada fijando su umbral de decisión. El circuito detector del umbral de apagado, está fijado por el valor del diodo Zener montado entre la base del transistor BC557 y masa (ver el esquema). En lugar del diodo Zener, puede utilizarse un diodo LED que tenga un umbral de encendido próximo a 3V.

A pesar de que el consumo del micro controlador se reduce bastante, es conveniente conectar la batería únicamente cuando el termostato esté en uso. De otra manera, la batería acabaría por descargarse. La finalidad de la batería es la de mantener los valores de configuración mientras el termostato está funcionando, y no cuando esté almacenado sin uso. En el esquema podemos ver que la desconexión de la batería se realiza mediante la extracción de un puente (jumper) entre el polo negativo de la batería  y masa. Este puente puede sustituirse por un pequeño interruptor deslizante, para poder accionarlo sin la necesidad de tener que abrir la caja.

Circuito impreso

Para la realización de este termostato he utilizado un circuito impreso de tipo universal. Es cierto que el acabado queda mucho mejor si se monta en un circuito impreso hecho a medida. Sin embargo, muchos aficionados a la electrónica son reacios a ‘perder el tiempo’ en fabricar un circuito impreso, y prefieren utilizar placas de tipo universal. Además, la fiabilidad del circuito impreso sólo depende del cuidado que se ponga durante el montaje y soldadura de sus componentes… el aspecto no mejora la fiabilidad.

Circuito impreso universal

Firmware

Termostato de precisión (v1.00)

Caja y frontal

He utilizado una caja de plástico de tipo comercial, de tamaño 130×130 mm y 35 mm de altura. Para darle un mejor acabado, he utilizado un trozo de Polimetilmetacrilato (Plexiglas).

Frontal delTermostato

El mecanizado y serigrafía lo he realizado con la CNC.