Entrenador de Reflejos y Coordinación

Hace 6 años hice un entrenador de reflejos con 6 pulsadores.

ENTRENADOR DE REFLEJOS – IMPROVES YOUR REACTION TIME

Después hice un mural de madera, y cambié los pulsadores por otros de gran tamaño, pudiendo controlar todo desde un PC mediante un software hecho a medida.

Mural con pulsadores (Entrenador de reflejos)

Con el software Reflejos.exe es posible controlar los tiempos, mostrar los intervalos entre pulsaciones, modificar las secuencias de los pulsadores, almacenar los tiempos de hasta 25 jugadores y mostrar su progresión mediante gráficas.

Software:Reflejos.exe (Control del juego/Prácticas QWERTY)

Posteriormente  hice un reloj LED con tecnología SMD, diseñando los PCB’s de la CPU y los dígitos numéricos. El PCB de control del  reloj lo hice pensando en una placa de desarrollo, igual que Arduino, montando conectores en todos los pines del microcontrolador. La CPU del reloj está construída con el microcontrolador AT89S52, el mismo microcontralador que utilicé en el primer Entrenador de Reflejos que hice, pero con encapsulado SMD.

Construye un Reloj SMD

En esta ocasión he actualizado el firmware del Entrenador de Reflejos y el software de control, para adaptarlos a esta nueva CPU y mejorar su operatividad. El nuevo montaje también es diferente, más enfocado a la rehabilitación y coordinación de movimientos que al juego. En este caso, los 6 pulsadores se pueden accionar con las manos y con los pies, y la conexión entre la CPU y el software de control es inalámbrica,  utilizando el módulo Bluetooth HC-05.

Entrenador de Reflejos y Coordinación

Nuevo esquema del Entrenador de Reflejos

Este es el nuevo esquema del Entrenador de Reflejos, con todas las conexiones adaptas al PCB del Reloj:

Esquema: Entrenador de Reflejos y Coordinación

Debido a la gran versatilidad de este PCB, en la adaptación no ha sido necesario cortar ninguna pista del circuito impreso ni hacer puentes entre ellas. Este PCB ya dispone de terminales de conexión para todos los periféricos que se necesitan conectar: los LED de señalización, los pulsadores, el display LCD y el módulo Bluetooth. El avisador acústico ya se utilizaba con el reloj, y va montado en el mismo PCB.

PCB: CPU del Reloj SERIE (Modificada)

Para la señalización óptica de los pulsadores he utilizado 2 LED SMD blancos por pulsador, en paralelo y alimentados a 5V, intercalando en serie una resistencia limitadora de 220 Ohmios en cada LED. Así la corriente máxima de cada LED es de aproximadamente 10mA. Con el fin de proteger la alimentación frente a un posible cortocircuito en el cableado, los 5 voltios que van hacia los pulsadores se alimentan de dos hilos diferentes, cada línea alimenta 3 pulsadores, y cada uno de estos hilos limita el consumo máximo intercalando una resistencia de 22 Ohmios en serie.

Para alimentar todo el conjunto he utilizado un conector microUSB. Así es posible utilizar cualquier cargador USB que tengamos disponible en casa. El consumo máximo de todo el circuito es inferior a 200mA.

PCB: microUSB

La programación y actualización del firmware del microcontrolador AT89S52 se realiza una vez montados todos los componentes en la placa, a través del conector ICSP. Lo ideal sería utilizar un programador ICSP comercial, pero si no lo tienes, podrías convertir en un momento un módulo Arduino en programador ICSP:

Programador ICSP con ARDUINO

Bluetooth HC-05

El módulo Bluetooth HC-05 hay que configurarlo antes de montarlo en la CPU.

Módulo HC-05

Para su configuración es necesario conectarlo a través de un interface serie con un PC, y con cualquier software Terminal y mediante comandos AT configurar su modo de funcionamiento como esclavo, y la velocidad a 57600 bps. Si se quiere, también se pueden modificar el nombre del dispositivo y su PIN de acceso a la conexión. La manera más fácil de configurar todo esto es a través de Arduino, utilizando su interface de comunicaciones serie para enviar los comandos AT al módulo  HC-05 y configurarlo.

Conexiones Arduino y HC-05 (configuración)

Al principio del código de configuración del módulo HC-05 he anotado los comandos AT más importantes, así como el modo de entrar en modo comandos AT. Dependiendo del tipo de módulo HC-05, el acceso a modo comandos es diferente, porque algunos módulos llevan un pulsador y otros no.

Bluetooth HC-05: Comandos AT

Acceso a descargas

Firmware para cargar en AT89S52: REFLEJOS_SMD_v1_02.HEX 

Configuración del módulo HC-05 con Arduino – DropBox: HC-05.rar

PCB de la CPU – PCBWay: Multipurpose_CPU_with_AT89S52 

Software de control – DropBox: Install_Reflejos.zip

Caja 3D – Thingiverse: Reflexes and Coordination Trainer

¿Necesitas fabricar un PCB?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

Logo: PCBWay

Ahora también puedes encargar trabajos 3D, mecanizados con CNC y fabricación de cajas metálicas o de plástico inyectado.

https://www.pcbway.es/

 

¿Soldadura en pasta?

En más de una ocasión me han preguntado si es mejor utilizar el estaño en pasta para soldar los componentes SMD. Está claro que para un fabricante la respuesta sería muy clara, porque la soldadura en pasta permite abaratar los costes de producción, y además es posible reducir el tamaño de los dispositivos electrónicos al máximo.

Arrastre de soldadura

Para las reparaciones y pequeños montajes, yo nunca he utilizado el estaño en pasta. En todas las reparaciones que se puedan hacer a mano, siempre he utilizado estaño en hilo y un soldador resistivo convencional. Lo más importante es elegir la punta del soldador, y el estaño más adecuados a la soldadura que se tenga que realizar. Con esto me refiero al diámetro y aleación del estaño, el tamaño de la punta del soldador, su temperatura, y el uso de flux en en algunos casos.

Soldando SMD-TQFP

Plancha de calor para soldar

Para hacer una prueba práctica, soldé un chip TQFP de 44 pines junto con 3 componentes SMD, en un PCB nuevo. Utilicé pasta de soldadura especial para utilizar con máscara (muy densa para dosificar con una jeringuilla), y una placa de calor de 400W.

Plancha de calor para soldar

La temperatura de esta placa es suficiente para fundir el estaño en pasta, y la temperatura máxima que pude medir en la superficie del circuito integrado fue de 210ºC.

Máscara (Stencil) con CNC

Como es muy complicado aplicar la pasta de soldar en un chip de 44 pines, con la ayuda de la CNC hice una máscara (Stencil). Como material utilicé una plancha de cobre de 0,2 mm de espesor, y para los otros 3 componentes SMD apliqué la pasta de soldar a mano.

Máscara TQFP44 con CNC

Para hacer las perforaciones en la máscara con la CNC, tomé todas las medidas del Datasheet del fabricante del chip, y las dibujé en el software SketchUp. Los cortes en la CNC los hice con una punta de grabado de 0,3mm., tamaño ligeramente inferior a las perforaciones de 0,4 mm.

Máscara TQFP44 en SketchUp

Resultado final

El funcionamiento de la plancha de calor fué bastante bueno, pero el exceso de pasta provocó que apareciesen bolas de estaño encima de los pines del circuito integrado… quizás tendría que haber reducido el ancho de las perforaciones de la máscara TQFP44 que hice con la CNC. El exceso de estaño lo tuve que retirar al final con un soldador convencional,  malla de desoldar y flux en gel.

Soldadura en pasta

También había un exceso de pasta en los demás componentes en los que apliqué la pasta de soldar con una pequeña espátula. Al ser una pasta bastante densa, no se puede utilizar una jeringilla, y es bastante complicado dosificar la pasta con una espátula.

Exceso de soldadura en pasta

Aunque resutado final de la soldadura con pasta es bueno, sigo pensando que me habría costado menos tiempo soldar todo a mano.

¿Necesitas fabricar un PCB?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

Logo: PCBWay

Ahora también puedes encargar trabajos 3D, mecanizados con CNC y fabricación de cajas metálicas o de plástico inyectado.

https://www.pcbway.es/

I2C & UART con Analizador Lógico

En la actualidad es mucho más sencillo y barato que antes, fabricar dispositivos electrónicos. La mayoría de los equipos que se fabrican ahora son de tecnología digital, y si requieren algún ajuste, casi siempre se realiza mediante un software…  los ajustes internos han desaparecido.

La tecnología digital ha permitido también abaratar los costes de desarrollo y producción, hasta el punto que ahora cualquier aficionado a la electrónica pueda disponer de algunos equipos de medida que antes sólo estaban al alcance de los fabricantes.

Ahora es posible disponer de un analizador lógico de 8 canales por menos de 10€, aprovechando como interface gráfico un PC. El uso de un PC en los equipos de medida permite de forma muy sencilla actualizar sus prestaciones, sólo hay que actualizar el software de control en el PC.

Analizador Lógico USB LA1002 de 8 canales 24 MHz

Este analizador lógico permite grabar las secuencias digitales que transmiten los equipos en tiempo real, pudiendo analizar posteriormente los protocolos que utilizan, medir la velocidad de las comunicaciones, comparar señales, etc. Con un analizador lógico se reducen notablemente los tiempos dedicados al desarrollo, y al mismo tiempo sirve para entender mejor los protocolos utilizados en las comunicaciones digitales.

Analizador Lógico USB LA1002

Hace unos meses monté un receptor de radio controlado por Arduino. Este receptor de radio es totalmente digital. Todos sus ajustes y control se realizan mediante el bus de comunicaciones I2C. Para comprender mejor el funcionamiento de un analizador lógico, voy a utilizar este receptor de radio como ejemplo, y voy a grabar las comunicaciones I2C entre el módulo receptor de radio y Arduino, y al mismo tiempo las señales RX/TX de la UART de Arduino.

Receptor de radio FM-RDS conectado al Analizador Lógico

Bus I2C

Hace unos años publiqué un video dedicado al Bus I2C. En este caso sólo voy a hacer un resumen.

Bus I2C

El bus I2C es un protocolo de comunicaciones bidireccional compuesto por 3 hilos, Datos, Reloj y masa (GND). Al ser esta una señal síncrona, controlada por los impulsos del reloj, la velocidad es variable y sólo en casos especiales se superan los 100 KHz.

Ambas líneas permanecen conectadas a nivel alto, mediante resistencias Pull-Up, y son los dispositivos los encargados de cargar las líneas para generar los impulsos. El dispositivo que hace de máster es el encargado de generar la señal de sincronismo (Clock). El dispositivo que envíe los datos, ya sea máster o esclavo, es el encargado de generar la señal de datos.

Los cambios de nivel en el hilo de datos siempre suceden cuando el nivel del hilo del Clock está a nivel bajo. Cuando esto no se cumple, es porque se está generando el bit de Start o el de Stop. Las comunicaciones I2C siempre comienzan con un bit Start, y finalizan con un bit Stop. Cuando el hilo del Clock está en nivel alto y cambia de estado el hilo de datos: si cambia de 1 a 0, es un bit Start y si cambia de 0 a 1 es un bit Stop.

Bus I2C, direccionamiento y datos

La información se transmite en formato de 8 bits, salvo la dirección que se compone de 7 bit, utilizando el octavo bit como indicación del dispositivo máster,  para indicar al esclavo o receptor, si va a transmitir datos a continuación o espera recibirlos de él. En ambos casos, el dispositivo máster genera la señal de reloj y el primer Byte con la dirección.

Con el fin de mantener la comunicación activa, el dispositivo que hace de receptor carga la línea de datos cuando recibe un Byte correctamente, generando así el bit ACK a nivel bajo.

Si el dispositivo transmisor detecta un nivel bajo al finalizar el envío de cualquier Byte, puede continuar con el siguiente, y si  recibe el bit ACK a nivel alto, podría reenviar de nuevo la información o finalizar la comunicación generando un bit Stop.

Software: PulseView

El software PulseView es el complemento necesario para controlar el analizador lógico USB LA1002 de 8 canales, y se puede descargar desde el siguiente link: https://sigrok.org/wiki/PulseView

Software PulseView

UART y RS232

Las  comunicaciones de una UART también es de 3 hilos y bidireccional, pero a diferencia del I2C, la comunicación de la UART es asíncrona. La UART utiliza un hilo para transmitir, otro para recibir y el tercero es el hilo de referncia o GND. Al no disponer de una señal de sincronismo (clock), en el dispositivo receptor es necesario configurar la velocidad y formato de las comunicaciones que utiliza el dispositivo transmisor.

Bit: START/STOP

Para que el dispositivo receptor pueda sincronizar el inicio de cada Byte que recibe, el dispositivo transmisor inserta un bit de inicio y otro de fin, son los bit de Start y Stop. El bit de Stop se puede considerar como un tiempo de inactividad, o pausa entre Bytes. Así el tamaño del bit de Stop puede ser del tamaño de 1 bit de datos, de 1,5 o 2… y no se puede omitir.

Este tiempo de inactividad del bit Stop, aparte de marcar el fin de cada Byte, lo utiliza el terminal receptor para convertir los datos serie de cada Byte en paralelo y almacenarlos en la memoria buffer de la UART. Lo procesadores antiguos, cuando recibían datos a una velocidad alta disponían de muy poco tiempo para realizar todo el proceso de almacenar los datos. Aumentando el intervalo de tiempo entre Bytes (bit Stop), era posible aumentar la velocidad de las comunicaciones serie.

Bit: DATOS

El número de bits de datos de una UART es variable, entre 4 y 8 bits. Lo normal es utilizar el formato estándar de 8 bit, equivalente a 1 Byte. Los formatos inferiores permitían aumentar la velocidad de las comunicaciones en los procesadores antiguos. Por ejemplo, con 7 bits se pueden codificar los primeros 127 caracteres de la tabla ASCII.

El bus I2C envía los datos en serie empezando por el bit más significativo, bit MSB. La UART lo hace al revés, enviando primero el bit menos significativo, bit LSB. Al final del último bit de cada Byte, es posible enviar un bit de paridad.

Bit: PARIDAD

El bit de paridad se puede omitir, a diferencia de los bit Start y Stop que son imprescindibles. El bit de paridad protege ligeramente la integridad de los datos que se reciben, pudiendo omitir los Bytes erróneos. El valor del bit de paridad es necesario definirlo en las comunicaciones:

  • (N)one = sin bit de paridad
  • (E)ven = paridad PAR … bit de complemento para que el número de unos sea par
  • (O)dd = paridad IMPAR … bit de complemento para que el número de unos sea impar
  • (M)ark = siempre 1*
  • (S)pace = siempre 0*

(*) Permite diferenciar los Bytes de direccionamiento y datos en las comunicaciones RS485 y RS422, cuando se conectan varios dispositivos receptores en paralelo de diferente dirección.

Envío serie: RS232

UART y el interface RS232
En este ejemplo un PC transmite el número 5 del teclado por la UART y su interface serie RS232. Cuando el procesador no envía datos el nivel lógico a la salida de la UART es alto (inactividad) , y cuando se transmite un 0 el nivel lógico es bajo.

El interface serie RS232 convierte la señal continua pulsante en otra alterna de mayor nivel, protegiendo así las comunicaciones de posibles inducciones en los cableados. Es importante destacar que el interface serie invierte los niveles lógicos de la UART.

Esta UART está configurada para transmitir a una velocidad de 4800 bps, sin bit de paridad, 8 bit de datos y 1 bit de Stop. En total se envían 10 bits, y se necesita un tiempo ligeramente superior a 2 mSeg. para transmitir un Byte.

Gestión I2C del módulo SI4703 desde Arduino

Si abrimos las librerías del módulo receptor de radio SI4703, podemos ver que en los registros del 0x0A hasta el 0x0F se almacena el nivel de campo recibido, la frecuencia sintonizada y los 64 Bytes de datos del último grupo RDS recibido. Los datos del RDS se guardan en los 4 últimos registros, ordenados y etiquetados con la  letra de cada bloque.

Gestión I2C desde Arduino

Observando la rutina de lectura, comprobamos que siempre envía por I2C los 32 Bytes de los 16 registros, pero empezando por el 0x0A. Así el primer valor leído será el nivel de campo, a continuación la frecuencia sintonizada y el RDS, dejando para el final los registros desde el 0x00 hasta el  0x09. En total se envían por el bus I2C  33 Bytes:  1 Byte de dirección mas los 32 Bytes de los 16 registros.

Decodificación de los datos recibidos por I2C

Datos RDS decodificados de los datos I2C

En la imagen anterior vemos los datos del Bus I2C que Arduino ha leído del módulo receptor de radio (SI4703). He coloreado los paquetes, cambiado el color cada 32 Bytes de datos. Como vimos antes, los primeros 2 Bytes son los del registro 0x0A. El Byte menos siginificativo de los dos es el nivel de campo recibido: 0x33 (hexadecimal) y si los convertidos a decimal serían 51dBuV.

El registro siguiente, el 0x0B, es la frecuencia sintonizada: 0x0023 = 35 decimal. Ahora le sumamos 875 (910) y luego lo dividimos entre 10 para obtener la frecuencia en MHz = 91,0.

A continuación tenemos los 8 Bytes con los datos RDS del último grupo recibido. Si copiamos los 8 Bytes del RDS y comprobamos que tipo de grupo es, podemos decodificar toda la información que contiene.

Por este grupo estamos recibiendo el bit TA, M/S, 1 bit del DI, las 2 primeras letras del PS, 2 frecuencias alternativas, y además el resto de información genérica de todos los grupos RDS: PI, TP y PTY.

Si nos fijamos con más detalle en la captura de datos recibidos por el bus I2C, vemos que cada grupo RDS se está repitiendo 20 veces. Esto es debido a la alta velocidad de lectura del bus I2C, en relación a la velocidad del RDS.

¿Necesitas fabricar un PCB?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

Logo: PCBWay

Ahora también puedes encargar trabajos 3D, mecanizados con CNC y fabricación de cajas metálicas o de plástico inyectado.

https://www.pcbway.es/

 

Reparar eBoock FNAC

Sustitución del display de un libro electrónico (eBoock). Este eBoock viene serigrafiado con el nombre de la tienda Fnac, pero monta el mismo display que el Kindle (Amazon) y Cervantes 3 (BQ). Es un display de 6 pulgadas con retroiluminación LED, modelo ED060XG1.eBoock AFNAC

Reparación

Desmontar un eBoock es algo más sencillo que un teléfono móvil, aunque los útiles necesarios para la reparación sean los mismos. La carcasa se desmonta metiendo por la ranura lateral una lámina metálica, y apalancando alrededor de todo el contorno. Antes de tirar del marco, hay que introducir una púa de plástico desde el borde interior del display hacia dentro, con el fin de despegar el adhesivo, es una cinta de doble cara, y no es imprescindible aplicar calor para que se despegue.

Repuesto del display ED060XG1
ED060XG1 – 6″

Una vez soltado el marco superior, sólo hay que desmontar 4 tornillos para separar el la carcasa inferior.

Interior eBoock

El marco interior del display sólo va sujeto por la parte inferior con dos tornillos, pero hay que tener la precaución de despegar las dos cintas de doble cara que lo sujentan por los laterales, antes de tirar hacia fuera. El marco de plástico, también va pegado con el frontal del display.

¿Necesitas fabricar un PCB?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

Logo: PCBWay

Ahora también puedes encargar trabajos 3D, mecanizados con CNC y fabricación de cajas metálicas o de plástico inyectado.

https://www.pcbway.es/

 

Monitor FM-RDS (v1.2)

Con este receptor es posible conocer los parámetros más importantes que se transmiten por la subportadora RDS. Con esta nueva actualización (v1.2), las librerías del RDS permiten analizar más información que antes, y todo el código está depurado para optimizar la memoria del ATMEGA328P, permitiendo así añadir más prestaciones en el receptor de radio, utilizando el mismo microprocesador.

Monitor FM-RDS v2

Tabla de caracteres del RDS

El sistema RDS transmite los textos codificando los caracteres con su propia tabla de 8 bits, y dispone de 3 tablas de caracteres diferentes, denominadas G0, G1 y G2. Por defecto, los receptores de radio traducen los 8 Bytes del PS y el Radio Texto (RT) utilizando la tabla de caracteres G0. La tabla GO incluye la mayoría de los caracteres utilizados por las diferentes lenguas de la zona EBU. Los receptores de radio tienen que leer el código de 8 bit que reciben por cada letra, y convertirlo al código que se corresponda con la tabla de caracteres que estén utilizando. En este caso sería necesario convertir los caracteres dos veces, una vez para adaptarlos a la tabla de caracteres gráficos de su display LCD, y otra más para codificarlos en UTF-8 y transmitirlos por el puerto serie.

Receptor RDS: tabla de caracteres

Los primeros 127 caracteres de la tabla del RDS siguen el estándar ISO, por lo tanto no hay que convertirlos. Sin embargo, los 127 caracteres más altos de la tabla del RDS no son estándar, y es necesario convertir sus códigos para mostrar correctamente las letras. En este receptor sólo se convierten los caracteres latinos más utilizados, son los caracteres enmarcados con color en la tabla del gráfico anterior.

El display LCD de este receptor dispone de una memoria RAM, que le permite almacenar un máximo de 8 caracteres gráficos diferentes. El display reserva las 16 primeras posiciones de su mapa de caracteres para almacenar gráficos, pero hay que tener en cuenta que el display sólo guardará 8 caracteres gráficos diferentes. Si se guardan los 8 caracteres en las primeras posiciones de la CGRAM (direcciones 0x00 a 0x07), estos mismos caracteres se copiarán también en las 8 posiciones siguientes (direcciones 0x08 a 0x0F). Debido a esta limitación, sólo se generan y guardan los gráficos de las 5 letras acentuadas en minúscula, y las letras: ü, ñ y ç. Cuando se reciban por RDS letras mayúsculas acentuadas, el programa las convertirá en letras mayúsculas sin acento.

Receptor FM-RDS con: SI4703

Este sencillo receptor de radio está basado en el módulo SI4703, de bajo coste y altas prestaciones. Este módulo incluye en su interior todo el receptor de radio, incluso el decodificador Estéreo, el decodificador RDS y un pequeño amplificador de audio. Para controlar este módulo, he utilizado el micro-controlador ATMEGA328P (Arduino).

Esquema: Radio LCD con SI4703

Descarga de ficheros

El firmware y librerías que necesitas para programar el ATMEGA328P,  los puedes descargar desde el siguiente enlace: RDS_Radio_SI4703 (v1.2)

¿Necesitas fabricar un PCB?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

Logo: PCBWay

Ahora también puedes encargar trabajos 3D, mecanizados con CNC y fabricación de cajas metálicas o de plástico inyectado.

https://www.pcbway.es/

Reloj Pac-Man con ESP32 & UTF-8

Actualización del firmware (v1.44) para el Reloj-Texto construido con 4 matrices LED, y controlado con el microprocesador ESP32. Con esta actualización, el display podrá mostrar los caracteres latinos de uso más frecuente: áéíóúü ÁÉÍÓÚÜ cÇ ñÑ. También se incluyen los avisos con voz sintetizada, y efectos gráficos Pac-Man.

Reloj-Texto con dos alarmas y 2 husos horarios

UNICODE & UTF-8

La conexión entre diferentes redes de ordenadores provocó la necesidad de crear un estándar que contemplara el juego de caracteres gráficos de cualquier lengua, incluyendo ideogramas, caracteres árabes, chinos, etc.

Caracteres UNICODE

El año 1991 se anunció públicamente la creación de Internet, y ese mismo año el Consorcio Unicode y la ISO desarrollaron ambos un estándar para codificar los caracteres:  Unicode – ISO / IEC 10646. Ambos estándares se pueden considerar equivalentes, si tenemos en cuenta que el repertorio, los nombres de caracteres y los puntos de código del estándar ‘Unicode Versión 2.0’, coinciden exactamente con los de ISO / IEC 10646-1: que fue publicado en 1993.

Actualmente, la codificación dominante es UTF-8, que es una codificación de ancho variable diseñada para la compatibilidad con versiones anteriores de ASCII, y para evitar las complicaciones con las marcas de orden de bytes que existen con UTF-16 y UTF-32 . Además, el 93% de todas las páginas web están codificadas en UTF-8 y el Grupo de trabajo de ingeniería de Internet (IETF) requiere que todos los protocolos de Internet identifiquen las codificación UTF-8. También el Consorcio de correo de Internet (IMC), recomienda que todos los programas de correo electrónico puedan mostrar y crear correo utilizando UTF-8.

Codificación UTF-8

Los primeros 127 caracteres de cualquier tabla de caracteres de procedencia anglosajona o latina, son comunes y su origen es la tabla de caracteres ASCII. Este conjunto de caracteres se pueden codificar dentro de una matriz binaria de 7 bit., y son los caracteres que por defecto muestra cualquier display.

Caracteres ASCII de 7 bits

Si queremos mostrar los caracteres específicos de cualquier lengua, por ejemplo las letras acentuadas, tendremos que ampliar de tamaño la matriz del display que almacena los caracteres en memoria, y asociar una posición específica a cada uno de los caracteres dentro de esa matriz.  De esta forma, la tabla de caracteres que almacena el display no se corresponderá con el código del carácter que recibamos a través del interface Web. Así el procesador del display tendrá que comprobar el código del carácter que recibe, y si es superior al 127,  reposicionar el código para apuntar al gráfico que tenemos asociado a ese código entrante, dentro de la matriz gráfica del display. El tamaño de la matriz gráfica del display suele ser de 8 bit, y con esto es posible almacenar 127 caracteres extra, que podrían ser letras acentuadas, logotipos o cualquier dibujo.

Integración UTF-8 en el display

Si pretendemos que los caracteres de este reloj se puedan programar a través de un interface Web, es necesario utilizar una codificación de caracteres estándar, y la más versátil es la codificación UTF-8 de 2 Bytes.

Este reloj utiliza 3 tipos de fuentes gráficas, dos de ellas limitadas a los 10 números, utilizadas para mostrar los dígitos de la hora en formato estrecho y ancho, y la otra es la que almacena los caracteres ASCII, desde el espacio cuyo código es 32 en decimal, hasta el 126 que es la tilde de la letra eñe, más conocida como virgulilla ~. A continuación, y a partir del código 127, es donde se almacenan los caracteres extra.

Hay muchas formas de almacenar las fuentes gráficas en un display, pero la forma más eficiente es asociar un Byte a los 8 pixeles que tiene cada columna de la matriz LED. Así es más rápida la gestión que tiene que hacer el procesador para desplazar los textos por el display.

La fuente de textos y gráficos de este display es de ancho variable, entre 2 y 5 pixel de ancho por 8 pixel de altura. Así se limita el ancho a las letras que no lo necesiten, por ejemplo el espacio, y se pueden mostrar más caracteres en el display.  Para localizar los caracteres en la matriz, todos ellos ocupan 6 Bytes. El primer Byte indica el ancho del carácter, que se corresponde al número de Bytes que tiene que leer el procesador para formar la letra en el display.

Para facilitar la interpretación visual de los gráficos, los 5 Bytes de cada carácter se suelen escribir en formato binario, pero también se podría escribir en formato hexadecimal o decimal si se quisiera reducir el tamaño del archivo en el editor.

En el gráfico siguiente. vemos el esquema de codificación de caracteres UNICODE, junto con UTF-16 y UTF-8.

Cuando se asigna un código a un carácter, se dice que dicho carácter está codificado. El espacio para códigos tiene 1.114.112 posiciones posibles (0x10FFFF). En el grafico anterior vemos el espacio de códigos dividido en tramos, con el fin de mostrar los diferentes esquemas de codificación UTF. Los puntos de código se representan utilizando notación hexadecimal agregando el prefijo U+.

Actualmente los sistemas operativos limitan la tabla UNICODE a los primeros 65.536 caracteres (0xFFFF), y el valor hexadecimal se muestra añadiendo ceros a la izquierda si es necesario, hasta completar los 4 dígitos hexadecimales.

Es conveniente aclarar, que los sistemas operativos disponen de diferentes tablas de caracteres, algunas de ellas son privadas, y no se deberían utilizar en un documento público con acceso a Internet, ya que no son un estándar.

Internamente en un PC se podría crear un documento utilizando cualquier fuente de caracteres, con el fin de mostrar algún gráfico en especial. El problema es si ese mismo documento se abriese utilizando una fuente de caracteres diferente; porque algunos caracteres ya no serían los mismos.

Si queremos codificar caracteres en UTF-8, limitando su longitud máxima a dos Bytes por carácter, sólo podremos codificar los primeros 2.048 caracteres UNICODE, y recibiremos caracteres de 11 bits. Así cuando recibamos un Byte en UTF-8 que comience con 110, sabremos que se trata de un carácter doble, y los 5 bits siguientes de ese Byte serán los 5 bits más significativos del carácter UNICODE que estamos recibiendo, sin olvidar que este carácter  tiene una longitud de 11 bits. A continuación recibiremos el segundo Byte, el cuál empezará con los bits 10, y a continuación recibiremos los 6 bits menos significativos del carácter UNICODE.

Decodificación UTF-8

  1. Cuando el bit más significativo de un Byte en UNICODE comience con un 0, la longitud del código UTF-8 no cambia, manteniendo el mismo valor UNICODE, y respetando así su compatibilidad con la tabla ASCII.
  2. Si se recibe un Byte en UTF-8 que empieza con los bits 110, su longitud será de 2 Bytes, y el segundo Byte empezará siempre por 10.
  3. Si se recibe un Byte en UTF-8 que empieza con los bits 1110, su longitud será de 3 Bytes, y los dos Bytes siguientes al primero empezarán con 10.
  4. Si se recibe un Byte en UTF-8 que empieza con los bits 11110, su longitud será de 4 Bytes y los 3 Bytes siguientes al primero empezarán con 10.

Esquema de montaje

Para que este display Reloj-Texto funcione, sólo hay conectar 5 hilos entre un lateral del display LED y el módulo ESP32. El sonido de la alarma y el audio sintetizado sale por el pin GPIO26 del módulo ESP32, y hay que conectarlo a un amplificador de audio con su altavoz.

Firmware (v1.44)

El archivo que necesitas para programar el ESP32, lo puedes descargar de forma gratuita desde el repositorio GitHubClock-Text_ESP32

Interface Web y ajustes

Este reloj se controla a través de cualquier dispositivo móvil, siempre que esté conectado a la misma red WiFi. El reloj dispone de 2 interfaces Web diferentes, pudiendo elegir su modo de funcionamiento. El reloj funciona de forma muy parecida en ambos modos, presentando la hora de acuerdo al formato que se haya configurado, y cada 30 segundos mostrando un rotación de texto.

  • Cuando el display está configurado en modo RELOJ: el texto será el día de la semana y la fecha; pero sólo en caso de que estuviese habilitada su presentación, porque en caso contrario el reloj siempre mostrará la hora.

Interface RELOJ: se puede modificar el huso horario al cuál se debe sincronizar el reloj, realizar los ajustes de formato y presentación de la hora, y modificar el brillo del display.

  • Cuando el display está funcionando  en modo MENSAJE: cada 30 segundos intercalará una rotación del texto que tenga programado.

Interface MENSAJE: se puede ajustar la velocidad de desplazamiento del texto, modificar el contenido del mensaje, y fijar la hora y repeticiones de sus dos alarmas.

Ambos interfaces disponen de un botón para cambiar su modo de funcionamiento, teniendo en cuenta que el reloj primero se reiniciará, sincronizando de nuevo la fecha y hora con el servidor NTP que le corresponda al uso horario ajustado. Al reiniciar el reloj, el punto de acceso WiFi al que se conecta,  podría asignar una dirección IP diferente a la anterior. También se han incorporado dos botones nuevos, uno para mostrar la hora con voz, muy interesante para personas invidentes, y el otro para forzar el borrado del display en cualquier momento, mediante la aparición de Pac-Man.

Con esta nueva versión (v1.44), es posible escribir textos utilizando letras acentuadas y la letra Ñ, tanto en mayúsculas como en minúsculas. Además, si el reloj está configurado con el huso horario de España y el formato de presentación de la hora es el Europeo, los textos del día de la semana y fecha, aparecerán traducidos al Español.

¿Necesitas fabricar un circuito impreso?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

PCB de prototipo gratis y con plazo de entrega rápido: https://www.pcbway.es/

Logo: PCBWay

 

 

 

Reloj-Texto con dos alarmas y 2 husos horarios

Reloj-Texto con 2 alarmas y 2 husos horarios. Digitalización de audio analógico, para almacenarlo en la memoria de un ESP32. Estos archivos de audio contienen señales acústicas y mensajes de voz, para utilizarlas en el nuevo firmware del display Reloj-Texto controlado por el ESP32. Con esta actualización, el display Reloj-Texto dispondrá de dos alarmas horarias, pudiendo configurarlas con alguno de las dos husos horarios que gestiona el nuevo firmware. El display se configura desde un teléfono móvil vía WiFi. La información de la fecha y hora se sincroniza a través de un servidor NTP, pudiendo mostrar la hora local, a elegir entre dos husos horarios diferentes.

Reloj y Texto en display LED, con ESP32

Audio sintetizado

El sonido de la alarmas no lo haré activando un buzzer piezoeléctrico, será un sonido PCM de 8 bit, el cuál grabaremos en la memoria del ESP32. Esa información de audio digital, se convertirá en audio analógico aprovechando uno de los dos conversores D/A (DAC) que incluye este microprocesador. En este caso, como el pin GPIO25 ya se está utilizando en este reloj, la salida de audio será a través del pin GPIO26

Muestreo y Retención

Es la extracción de algunos valores instantáneos de duración teóricamente nula. Según la teoría de Shannon,  para muestrear una señal y poderla reconstruir, es necesario que el muestreo se realice un número de veces al menos igual al doble de la frecuencia máxima a muestrear. Para muestrear una frecuencia vocal de 4 kHz, necesitaríamos muestrear  como mínimo a:  4×2=8 kHz.

Esto lo podríamos representar con un interruptor que se abriera y cerrara 8.000 veces por segundo. A la salida de éste, obtendríamos una secuencia de impulsos cuya amplitud sería el valor instantáneo que tenía la señal de audio original.

Cuantización

Es la conversión que efectuamos para trasladar los valores instantáneos de tensión de la señal muestreada, a una escala compuesta por una serie de niveles. Cuanto mayor sea el número de niveles, mayor será la relación S/R. Como es de esperar, estos niveles los analizaremos con un sistema binario, para posteriormente poderlos transmitir de una forma digital. Con los sistemas PCM de 8 Bit, se obtienen 256 niveles de cuantización (±127 con respecto a cero).

Codificación

Es el proceso de lectura, de forma digital, de la secuencia de valores cuantizados. Esto quiere decir que a cada nivel de cuantización le corresponde un valor binario determinado, y dependiendo del número de niveles, necesitaríamos un número de bit por cada muestra. Esta es la primera limitación que encontramos para cuantizar la señal con un máximo de niveles, pues necesitamos transmitir todos los valores instantáneos de una muestra, en un tiempo máximo dado por la inversa de la frecuencia de muestreo ( t = 1/f ).

Esquema de montaje

Para que este display Reloj-Texto funcione, sólo hay conectar 5 hilos entre un lateral del display LED y el módulo ESP32. El sonido de la alarma sale por el pin GPIO26 del módulo ESP32, y hay que conectarlo a un amplificador de audio con su altavoz.

IMPORTANTE: la salida de audio DAC del ESP32 está referenciada a 1.5V.  Así es necesario bloquear la corriente continua continua a la entrada del amplificador de audio, intercalando en serie un condensador cerámico de aproximadamente 100nF. Como el nivel de audio a la salida DAC puede llegar a medir 3Vpp, es conveniente intercalar un atenuador a la entrada del amplificador, intercalando un divisor de tensión resistivo, o un potenciómetro si se quiere disponer un ajuste del nivel de audio.

Firmware

El archivo que necesitas para programar el ESP32, lo puedes descargar de forma gratuita desde el repositorio GitHub: Clock-Text_ESP32

Caja 3D (Reloj-Texto)

El fichero .stl que necesitas para fabricar la caja de este display LED, lo puedes descargar desde el siguiente enlace: Clock-Text with 2 alarms and 2 time zones (revision)

¿Necesitas fabricar un circuito impreso?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

PCB de prototipo gratis y con plazo de entrega rápido: https://www.pcbway.es/

Logo: PCBWay

 

Reloj de precisión, 8 x 7 segmentos LED

Construcción de un reloj de precisión, con 8 dígitos LED de 7 segmentos. Este display se configura desde un teléfono móvil vía WiFi. La información de la fecha y hora se sincroniza a través de un servidor NTP, convirtiéndolo así en un reloj muy preciso. Este display está construido con el módulo ESP32 y 8 dígitos LED de 7 segmentos, pudiendo conectar también un segundo display OLED de 64×48 pixel (0,66 pulgadas).

 

8 dígitos de 7 segmentos con MAX7219

Hace unos meses monté un reloj de precisión, sincronizado desde un servidor NTP. Hice dos versiones distintas, y en ambas utilicé 4 matrices LED de 8×8 pixel.

Reloj de precisión, configurado por WiFi

El primer reloj tenía un display adicional de tipo OLED, y en el segundo sólo instalé las 4 matrices LED con el fin de reducir el tamaño de la caja.

Reloj y Texto en display LED, con ESP32

Ahora voy a montar otro reloj todavía más pequeño y barato, utilizando 8 dígitos LED de 7 segmentos.

8 dígitos LED de 7 segmentos

Este reloj tendrá la misma precisión y funcionalidades que los anteriores, sincronizando la fecha y hora a través de un servidor NTP, y controlando sus funciones mediante un interface Web, a través de una conexión WiFi.

Esquema de montaje

El montaje de este reloj es muy rápido y sencillo,  sólo hay que conectar 5 hilos entre un lateral del PCB de 8 dígitos y el módulo ESP32.

Esquema de montaje del reloj de 7 segmentos

Configuración con interface WEB

Este reloj LED se configura a través de su propio interface Web, tecleando la dirección IP que le asigna el Router WiFi, en la ventana de cualquier navegador de Internet que esté conectado a la misma red. Todos los cambios se guardan en la memoria EEPROM del módulo ESP32.

Configuración del reloj por WiFi

De esta forma el reloj siempre arrancará con los parámetros que tenía programados la última vez que se desconectó su alimentación.

Firmware

El archivo que necesitas para programar el ESP32, lo puedes descargar de forma gratuita desde el repositorio GitHub:

Precision_Clock_ESP32_7Segment

Y también desde Dropbox:

ESP32_Time_8BCD_JR.rar

Caja 3D (Reloj de 7 segmentos)

 

Caja 3D, para el PCB de 8 dígitos LED de 7 segmentos

El fichero .stl que necesitas para fabricar la caja de este reloj LED de 7 segmentos, lo puedes descargar desde el siguiente enlace: Precision clock on 7 segment LED display, configured by WiFi

¿Necesitas fabricar un circuito impreso?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

PCB de prototipo gratis y con plazo de entrega rápido: https://www.pcbway.es/

Logo: PCBWay

 

 

Reparación Placa Base HP xw4300 Workstation

Reparación de la placa base de un HP xw4300 Workstation. Reparar una placa base de un PC no es una tarea sencilla, pero hay averías muy evidentes que se pueden solucionar sin apenas conocimientos de electrónica. Cuando una placa base empieza a fallar, es muy frecuente encontrar algún condensador electrolítico deformado, incluso a veces rajado. Cuando esto sucede, la avería se suele solucionar al cambiar los condensadores electrolíticos defectuosos.

HP xw4300 Workstation

Sistemas informáticos

En la actualidad, la mayoría de los trabajos dependen del buen funcionamiento de algún sistema informático, ya sea para el control del equipamiento de una fábrica, o para gestionar la contabilidad en una pequeña empresa. En la mayoría de los casos, hay equipos que deben funcionar de forma ininterrumpida, por ejemplo un PC cuando realiza las funciones de un servidor  conectado a una red informática.

Equipos conectados en RED

Para estos casos se suelen elegir equipos muy fiables, pero siempre existe el riesgo de que algunos de sus componentes electrónicos sea de baja calidad. Una avería muy común, es el deterioro de los condensadores electrolíticos de la  placa base.

Placa base averiada

En la mayoría de los casos se opta por sustituir la placa base por otra nueva, pero si la avería es muy evidente porque se ven los condensadores electrolíticos reventados, siempre merece la pena  invertir un poco de tiempo en reparar la avería.

Reparación

Reparar una placa base es muy complicado y poco habitual, debido a la complejidad que se tiene para hacer medidas con el PC funcionando. El método que normalmente se emplea en estos casos, es desmontar la placa y realizar una inspección visual de todos sus componentes, contactos y soldaduras. En caso de no encontrar nada anormal, la mejor solución seria sustituir la placa base por otra nueva.  En caso de encontrar algún componente visiblemente averiado, como un circuito integrado rajado, o algún condensador electrolítico hinchado, no sería mala idea intentar repararla.

Medida de capacidad y ESR

Para hacer este tipo de reparaciones no se necesitan muchos conocimientos de electrónica, porque sólo se trata de sustituir componentes visiblemente defectuosos, pero es necesario disponer de las herramientas adecuadas y tener habilidad con el manejo del soldador.

PCB multicapa

El PCB de una placa base es multicapa, y es muy fácil romper alguna conexión interna si no se tiene cuidado al desoldar los componentes.

Desoldar componentes

Es muy importante calentar bien el estaño de todos los terminales del componente a desoldar, antes de extraerlo.

¿Necesitas fabricar un circuito impreso?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

PCB de prototipo gratis y con plazo de entrega rápido: https://www.pcbway.es/

Logo: PCBWay

Reparación foco LED para buceo

Reparación de un foco LED para buceo, alimentado con 4 baterías tipo 18650 de Li-Ion (3,7V) 3000mAh. Este foco tiene dos pulsadores, uno de ellos para iluminar en color rojo o azul, y el otro para la luz blanca. La luz blanca es de gran potencia, y permite utilizar 3 niveles diferentes de brillo: alto (12,6W), medio (6,5W) y bajo (4,2W). La luz roja puede funcionar en modo continuo o intermitente y su potencia es 4,7W. La luz azul es fija, y tiene una potencia 2,2W.

Foco LED de buceo

Análisis del circuito

Este foco LED dispone de dos pulsadores, uno para controlar el encendido de luz roja y azul, y el otro para la luz blanca. El control de todo el circuito se realiza a través de un circuito integrado, cuya referencia está borrada, pero podría ser un micro controlador.

Circuito del fofo LED

El driver de potencia para el encendido de los LED consiste en 4 transistores Mosfet de canal P.

  • ROJO: Con 2 transistores  MOSFET canal P de 2,5A (A19T)
  • AZUL: Con 1 transistor MOSFET canal P de 2,5A (A19T)

  • BLANCO: Con 1 transistor  MOSFET canal P de 50A (CMD50P03)

MOSFET: CMD50P03

Avería

Esta linterna tenía cortados los dos hilos del pulsador de encendido de la luz blanca. Después de soldarlos y comprobar que todo funcionaba correctamente, cerré la carcasa, pero la linterna seguía fallando de vez en cuando. Al desmontar la linterna de nuevo, comprobé que el cableado que controla el encendido de la luz blanca fallaba, dependiendo de la posición del cableado. La solución fue sustituir la cinta de conexión de 5 hilos del pulsador que controla el encendido de los LED blancos.

Potencia del foco LED

Al final comprobé que también estaban abiertas las dos resistencias limitadoras de los LED de los pulsadores. Son dos resistencias SMD de 1K, las cuales sustituí por otras de 910 Ohmios al no tener repuestos de 1K.

¿Necesitas fabricar un circuito impreso?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

Desde ahora y hasta el 31 de Diciembre de 2020, PCBWay ofrece cupones de descuento entre 5 y 200$, dependiendo del importe de tu pedido.

PCBWay, sorteos hasta fin de año 2020

Además, todos los que ya sean clientes por haber realizado algún pedido, podrán participar en el sorteo de varios regalos, como un DRON DJI Mini2, una tarjeta de regalo de 50$ para compras en Amazon, un Arduino Mega, cupones de descuentos y algunos regalos más. Si necesitas hacer un PCB flexible, ahora los puedes conseguir con un 15% de descuento. Y si eres creativo, también puedes presentar tu proyecto de Navidad, y conseguir alguno de los premios que se entregarán a los 3 mejores proyectos.

PCB de prototipo gratis y con plazo de entrega rápido: https://www.pcbway.es/

Logo: PCBWay