Transmisor DCF77 con ESP32

Construcción de un pequeño transmisor de 77,5 KHz, para poder poner en hora los relojes DCF77 que no reciban correctamente la señal del transmisor de Alemania. Este transmisor es portátil, funciona con una batería de 3,7V y es muy preciso, ya que toma la información de la fecha y hora sincronizando previamente su reloj a través de un servidor NTP. Este transmisor está construído a partir del módulo ESP32, acoplando un pequeño display OLED de 64×48 pixel y 0,66 pulgadas.

ESP32 + OLED

Sistemas de sincronización horaria

Actualmente existen muchos métodos para mantener la hora exacta en cualquier dispositivo electrónico, ya sea través de un receptor GPS, o la recepción de la señales horarias en onda larga que se emiten desde diferentes países: 77,5 kHz desde Frankfurt en Alemania, 40 y 60 kHz desde Japón, 60 KHz desde Colorado en EE.UU, 66,66 kHz desde Taldom en Rusia, 68,5 kHz desde Lington en China, 60 kHz desde Anthorn en Reino Unido, o 162 kHz desde Allouis en Francia.

Cobertura DCF77

La mayoría de los relojes sincronizados por radio que se venden en Europa, utilizan la recepción de las señales horarias que envía el transmisor DCF77 desde Frankfurt, en Alemania.  Como sucede con cualquier transmisión por radio en Onda Larga, su cobertura varía en función de la distancia, climatología y el umbral de ruido electromagnético existente en el punto de recepción.

Con el fin de poder utilizar algunos relojes DCF77 que no disponen de ajuste de hora manual, hace algo más de un año publiqué una información para construir un pequeño transmisor que simulara la emisión DCF77. Este transmisor constaba de dos partes: una hardware construida con Arduino, junto con un software que funcionaba bajo Windows, encargado de suministrar los códigos de tiempo al transmisor.

Transmisor experimental DCF77

Tiempo UNIX

Tiempo Unix  se define como la cantidad de segundos transcurridos desde la medianoche UTC del 1 de enero de 1970, sin contar segundos intercalares. El tiempo que representa es UTC, pero no tiene forma de representar segundos bisiestos de UTC (por ejemplo, 1998-12-31 23:59:60).

Cualquier dispositivo que disponga de una conexión a Internet, podría sincronizar su fecha y hora con gran precisión en cuestión de segundos. Sólo es necesario  conectarse a un servidor NTP para recibir el código de tiempo, y luego introducir los comandos en una librería para que nos entregue la fecha y hora local en la zona que queramos .

D1 mini ESP32

Para hacer este nuevo transmisor DCF77, he utilizado una placa ESP32 y un pequeño display OLED de 64×48 pixel, 0,66 pulgadas. El módulo ESP32 dispone de todo lo se necesita para hacer un transmisor DCF77  completo.

Bloques ESP32
ESP32
  • Procesador de 32 bit, que permite generar la frecuencia de 77,5 kHz con mucha más precisión que Arduino.
  • Reloj en tiempo real (RTC) para gestionar el envío de los códigos de tiempo DCF77
  • Interface WiFi, para conectar a un servidor NTP y sincronizar la fecha y hora con gran precisión.

LIVE D1 mini ESP32

El módulo ESP32 es capaz de sincronizar cualquier reloj DCF77 por si solo, incluso se podría prescindir del display. Sólo sería necesario conectar un trozo de cable en el pin IO25 (antena) y acercarlo al reloj, aunque su alcance sería muy limitado.

MiniKit ES32

HW-699 0.66″ OLED display (64×48)

Con este display, además de mostrar la fecha y hora, es posible saber qué está haciendo el transmisor DCF77 en cada momento. El display  HW-699 se comunica con el módulo ESP32 mediante su interface I2C, y es posible configurarlo con dos direcciones diferentes (0x3C / 0x3D). Por defecto utiliza la dirección 0x3C, y así es como lo he utilizado para hacer este montaje.

Display OLED 0,66"

Módulo ESP32, dentro del transmisor DCF77

Aprovechando que ya tenía un transmisor DCF77 con Arduino, he montado dentro de su caja el módulo ESP32, junto con el display OLED. De esta manera aprovecho además de la caja su fuente de alimentación (batería 3,7V + StepUp 5V + módulo de carga), los indicaciones LED y el amplificador de potencia junto con su bobina de antena.

Esquema: Transmisor DCF77

Firmware:

Repositorio GitHub:
https://github.com/J-RPM/DCF77-Transmitter

El archivo que necesitas para programar el ATmega328P, lo puedes descargar de forma gratuita desde el siguiente enlace: TX_DCF77.rar

El archivo que necesitas para programar el ESP32, lo puedes descargar de forma gratuita desde el siguiente enlace: DFC77_ESP32_JR.rar

Soporte 3D (ESP32+Display)

Soporte OLED

El fichero .stl que necesitas para fabricar esta soporte, lo puedes descargar desde el siguiente enlace: DCF77 transmitter with ESP32

¿Necesitas fabricar un circuito impreso?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

Logo: PCBWay

https://www.pcbway.es/

Resistencias de carga para electrónica

Funcionamiento y usos de las cargas electrónicas, destinadas a comprobar los sistemas de alimentación cuando entregan su máxima potencia, ya sean conectados a la red eléctrica como a baterías. Las resistencias de carga permiten comprobar la corriente máxima que soporta un cargador de baterías, medir el rizado y ruido de una fuente de alimentación a plena carga, comprobar la capacidad real de baterías y pilas, etc. Se realizan pruebas y medidas con tres resistencias de carga diferentes, una resistencia de carga convencional, otra electrónica de construcción casera… y la última también electrónica, de 150W controlada por microprocesador.

Diferentes usos de las resistencias de carga

En un taller de electrónica, ya sea de tipo profesional o aficionado, son muy útiles las resistencias de carga. Las resistencias de carga permiten comprobar y ajustar equipos de RF, sin tener que montar una antena y radiar frecuencias no permitidas.

Cargas de RF

Pero no sólo son útiles este tipo de resistencias de carga, en este caso me voy a centrar en las resistencias de carga que se utilizan para simular consumos en sistemas de alimentación y comprobar su correcto funcionamiento, o su autonomía si se trata de un sistema de alimentación con baterías.

Cargas electrónicas de corriente constante

Cuando la resistencia de carga se va a utiliza para comprobar sistemas de alimentación, ya es posible incluir circuitos de control  por ancho de impulso (PWM) o analógicos, con el fin de mantener una corriente de descarga constante en baterías, sin importar que se vaya reduciendo su tensión con el tiempo.

Curvas de descarga de baterías Li-ion

Así  se podrá medir la capacidad real de una batería o pila, fijando un valor fijo de corriente de descarga, con tan sólo cronometrar el tiempo que ha tardado en alcanzar su tensión mínima (batería descargada). La capacidad de una batería es un parámetro muy importante, y los fabricantes  rotulan su valor en Amperios/hora (Ah) o miliamperios/hora (mAh), dependiendo de la capacidad y tipo de batería.

Hace tiempo medí la capacidad real de una serie de baterías nuevas, con el fin de comprobar la tolerancia que existía con el valor que declaraba el fabricante. Ya suponía que siendo unas baterías de origen chino, su capacidad real podría ser mucho más baja del valor que indicaban en la cubierta. Lo que no me imaginaba es que esa diferencia pudiera ser tan grande…

Medidas de la capacidad real de algunas baterías

Para hacer estas medidas construí una carga electrónica de corriente constante, que permite funcionar con tensiones que varíen entre 1 y 60 voltios, manteniendo la corriente constante al valor que se fije mediante sus dos potenciómetros de ajuste. En el diseño, la corriente máxima la limité a 3A, porque la disipación que le puse no era muy buena, a pesar de que el transistor que monté podría soportar hasta 15 amperios.

Carga de corriente constante, con valores máximos de 60V y 3A

Si estás interesado en conocer el funcionamiento de una carga electrónica de corriente constante, o quieres conocer más detalles para fabricarte una con muy pocos componentes, lee el siguiente artículo:

Construye una carga electrónica

Carga electrónica de 150W

Actualmente se pueden encontrar a la venta multitud de cargas electrónicas de corriente constante, a un precio muy asequible (<20€). En realidad no merece la pena comprar los componentes para montar una carga electrónica, cuando se pueden conseguir ya montadas a un precio inferior al que habría que pagar si se compran los componentes sueltos. Bajo mi punto de vista, el único interés que podría tener montar una carga electrónica componente a componente, sería por afición o con fines educativos. Como norma general, cualquier dispositivo electrónico que se pueda comprar en una tienda, siempre saldrá más barato comprarlo que fabricar uno igual… y eso dejando aparte el acabado final.

Carga electrónica de corriente constante, hasta 150W

Características

  • Tensión de alimentación: 6 ~ 12VDC
  • Medida de tensión: 0 ~ 150VDC   precisión: 0,05 V
  • Medida de corriente: 0 ~ 10A precisión: 0,05A
  • Medida de potencia:  0 ~ 150W
  • Medida de energía : 0 ~ 99999,9Wh precisión: 0,01Wh
  • Medida de potencia: 0 ~ 2999,9 W precisión: 0,01 W
  • Medida de Impedancia: 0 ~ 999,9Ω precisión: 0,01Ω
  • Rango de temperatura: 0 ~ 99 °C precisión: 1 ℃
  • Ajuste de tensión máxima y mínima con alarma: 0 ~ 150VDC
  • Ajuste de corriente máxima con alarma: 0 ~ 10A
  • Ajuste de potencia máxima con alarma:  0 ~ 150W
  • Medida de capacidad: 0 ~ 999,999Ah precisión: 0,001Ah
  • Tiempo máximo: 999:59:59 precisión: 1s
  • Potencia de refrigeración del ventilador: <150W
  • Temperatura para el arranque del ventilador: > 40 ℃

Configuración y funcionamiento

El manual de funcionamiento que se incluye en esta carga de 150W, se podría catalogar como suficiente, pero es mejorable. Después de practicar un rato con los menús y configuraciones, llegas a acostumbrarte, pero creo que el fabricante debería haber puesto como mínimo dos pulsadores en lugar de uno. Con un sólo pulsador para todo, es muy fácil confundirse y hacer justamente lo que no quieres. (Modo irónico: ON) Es posible que el diseñador de esta carga fuera en su juventud telegrafista, y está muy acostumbrado a codificar letras a base de pulsaciones (Modo irónico: OFF).

Con el fin de que no se me olvide el modo de acceder a todos los menús, hice un diagrama a modo resumen en una hoja, y la tengo guardada junto con la carga. Así será mucho más fácil cuando la tenga que utilizar dentro de un tiempo, y ya no me acuerde de nada.

Diagrama de funcionamiento y configuración, de la carga electrónica de 150W

Marco de sujeción para el LCD

Un fallo de diseño de esta carga, es la falta de sujeción del display LCD dentro de su alojamiento. Al girar la carga se desprende el display y se queda colgando de la cinta flexible de conexiones. Para solucionar este problema he fabricado un marco en PLA, con la impresora 3D, para sujetar el display en su soporte. Este marco entra a presión, evitando que se mueva el display de su alojamiento, protegiendo al mismo tiempo su cinta de conexión con el PCB.

Si quieres fabricar esta marco de protección con una impresora 3D, puedes descargar el fichero .STL desde el siguiente link:

Clamping frame for the LCD of the 150W electronic load resistor

¿Necesitas fabricar un PCB?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos, pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay. Hasta un 30% de descuento para PCBs especiales, con fabricación en 24 horas.

Logo: PCBWay

Ahora el servicio de montaje en PCBWay por tan solo 30$, con tiempo de entrega rápido: https://www.pcbway.es/

 

Soldadura de doble punto

Montaje de un kit de soldadura de doble punto, alimentado con una batería de 12V reciclada de un automóvil. Este soldador permite unir pletinas de hasta 0,15 mm de sección, muy útil para construir los paquetes de baterías que llevan como alimentación algunos dispositivos electrónicos. Construcción y montaje de una carcasa de protección para el módulo controlador, construida con una impresora 3D. Pruebas de funcionamiento del soldador, modificando la potencia y soldando pletinas de níquel de 0,1 y 0,2 mm.

Tenaza de soldar por puntos

Soldadura por puntos

La soldadura por puntos se basa en presión, intensidad y tiempo. En esta soldadura se calienta una parte muy pequeña de las piezas a soldar mediante el paso de corriente eléctrica, alcanzando temperaturas próximas a la fusión, y se ejerce una presión entre ambas piezas. Este tipo de soldadura es muy utilizado en la industria de automoción para unir chapas o láminas metálicas entre si,  normalmente de espesor entre 0,5mm y 3mm. Los mejores resultados se obtienen cuando las dos chapas tienen el mismo grosor.

Soldadura por puntos
Soldadura por puntos

Etapas de las soldaduras por puntos

  • Colocación de las chapas a soldar entre ambos electrodos.
  • Acercamiento de los electrodos en las chapas ejerciendo presión.
  • Soldadura: tiempo que está circulando la corriente eléctrica.
  • Forjado: tiempo transcurrido hasta el levantamiento de los electrodos.
    Etapas de la soldadura por puntosEtapas de la soldadura por puntos

Tiempo de soldadura

La generación de calor es directamente proporcional al tiempo de soldadura. Debido a la transferencia de calor de la zona de soldadura a los metales base y a los electrodos, así como a la pérdida libre de calor de la superficie al entorno, se necesitará una corriente y tiempo mínimo. Cuando se detiene la corriente, las puntas de cobre enfrían la soldadura por puntos, haciendo que el metal se solidifique bajo presión.

Fuerza de soldadura

Las piezas de trabajo deben ser comprimidas con cierta fuerza en la zona de soldadura para permitir el paso de la corriente. Si la fuerza de soldadura es demasiado baja, la expulsión puede ocurrir inmediatamente después de iniciar la corriente de soldadura, debido a que la resistencia de contacto es demasiado alta, dando como resultado una rápida generación de calor.

Cables tipo AWG

Los equipos de soldadura por punto pueden ser fijos o portátiles. Los equipos portátiles suelen incorporar los electrodos en la misma máquina, a modo de tenaza. Estas tenazas son de gran sección y baja resistencia eléctrica (alta conductividad), debido a la alta corriente que debe circular y con el fin de minimizar al máximo las pérdidas.  En algunos casos es necesario separar la máquina de la tenaza, y se utilizan unos cables de conexión entre ambos. En estos casos, los cables deberían ser lo más cortos posible y de gran sección. A continuación se muestra una tabla con las características de los cables tipo AWG, normalmente utilizados para este fin.

Tabla de características de los cables AWG

Soldadura de doble punto

La soldadura de doble punto se utiliza cuando no se tiene acceso con los electrodos a las dos caras de unión, como sucede cuando tenemos que unir un número determinado de baterías en serie o paralelo. Para obtener buenos resultados con una soldadura de doble punto, el espesor de la chapa inferior tendría que ser igual o mayor al de la chapa superior, evitando así las pérdidas debidas a un exceso de calentamiento en la chapa inferior.

Corriente en la soldadura de doble punto

 

Principales defectos en la soldadura por puntos

  • Intensidad demasiado alta: penetración demasiado profunda y agujeros.
  • Intensidad demasiado baja: mala resistencia de la unión.
  • Presión demasiado alta: marcas profundas en las chapas.
  • Presión demasiado baja: salpicaduras y agujeros.
  • Tiempo de soldadura demasiado largo: baja calidad del punto y agujeros.
  • Tiempo de soldadura demasiado corto: mala resistencia de la unión.

Diferentes estados de un punto de soldadura

Características de los metales en la soldadura por puntos

Las aleaciones rojas y bronces fósforos se sueldan mejor. Los metales y las aleaciones de distinta naturaleza se pueden soldar, pero si sus temperaturas de fusión no son muy diferentes.

  • Níquel y sus aleaciones se sueldan fácilmente con una intensidad muy elevada.
  • Aluminio, magnesio y sus aleaciones pueden soldarse a condición de que se emplee una corriente muy intensa durante un tiempo muy corto, y se controle rigurosamente la cantidad de energía suministrada.
  • Latón se suelda más fácilmente que el aluminio, aplicando una corriente elevada durante un tiempo corto.
  • Zinc y sus aleaciones son delicadas de soldar por su baja temperatura de fusión.
  • Cobre es imposible de soldar con cobre. En mejor de los casos, la soldadura es muy mala.

Temperatura de fusión de los metales

  • Estaño: 232°C
  • Plomo: 327°C
  • Zinc: 420°C
  • Magnesio: 650 ºC
  • Aluminio: 650°C
  • Bronce: 880° ··· 920°C
  • Latón: 930°··· 980°C
  • Plata: 950°C
  • Oro: 1054ºC
  • Cobre: 1083°C
  • Hierro fundido: 1220°C
  • Manganeso: 1244ºC
  • Metal monel: 1340°C
  • Acero de alto carbono: 1370°C
  • Silicio: 1410ºC
  • Acero inoxidable: 1430°C
  • Níquel: 1450°C
  • Cobalto: 1495ºC
  • Hierro: 1535°C
  • Titanio: 1650ºC
  • Vanadio: 1730ºC
  • Platino: 1770ºC
  • Cromo: 1900ºC
  • Molibdeno: 2610ºC
  • Tungsteno: 3380°C

Equipo de soldadura de doble punto, para construir paquetes de baterías

Para soldar baterías, normalmente se utilizan chapas de níquel con secciones comprendidas entre 0,1 y 0,2 mm. El tiempo de conexión de una soldadura por puntos tiene que ser muy preciso. Para este tipo de soldaduras, el tiempo varía entre 3 y 10 ms, y depende de la corriente necesaria para fundir el metal que se vaya a soldar, sin llegar a perforarlo. Como es lógico, los valores de corriente y tiempo de conexión dependerán de la sección y tipo de chapa que utilicemos.

Chapas de níquel

Las soldaduras por puntos se realizan provocando un cortocircuito en la fuente de alimentación, y tan importante es controlar la temperatura de fusión del metal a soldar, como proteger su fuente de alimentación, limitando los tiempos de conexión y el intervalo mínimo entre soldaduras consecutivas.

Soldadura de doble punto con transformador

Hay muchas maneras de hacer soldaduras por puntos, se pueden utilizar transformadores y soldar con tensión alterna, o utilizar baterías o súper condensadores y soldar con tensión continua. Lo más importante es utilizar el controlador adecuado, a la tensión y corriente de la fuente de alimentación que utilicemos. Para soldar con tensión alterna se suelen utilizar transformadores reciclados de hornos microondas, sustituyendo el devanado de AT por un par de espiras de cable de gran sección.

También se podría utilizar un equipo de soldadura por arco convencional, los de transformador. No sirven los equipos de soldadura de tipo inverter, porque precisamente estos equipos incorporan un sistema para evitar que se pegue la varilla cuando se inicia la soldadura, y cortan la tensión cuando se produce un cortocircuito.

Kit de soldadura de doble punto, para alimentarlo con una batería de 12V

Para soldar con tensión continua, aprovechando la batería de 12V que he sustituido en el coche, he comprado un kit que incluye todo lo necesario:
– Placa controladora
– Cables de conexión
– Dos electrodos de cobre para hacer la soldadura

Kit de soldadura de doble punto, para alimentarlo con una batería de 12V.

Carcasa de protección para el PCB

He fabricado una carcasa de protección en PLA, con la impresora 3D, para evitar posibles  cortocircuitos cuando el equipo de soldadura está alimentado.

Carcasa 3D

Si quieres fabricar esta carcasa con tu impresora 3D, puedes descargar el fichero .STL desde el siguiente link: Protective housing for a controller module of a double point welding kit

¿Necesitas fabricar un PCB?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos, pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay. Hasta un 30% de descuento para PCBs especiales, con fabricación en 24 horas.

Logo: PCBWay
Ahora el servicio de montaje en PCBWay por tan solo 30$, con tiempo de entrega rápido: https://www.pcbway.es/

 

 

Control-Medidor de Ozono en el aire, con Arduino

Construcción de un medidor de ozono en el aire con Arduino. Al mismo tiempo, este medidor se encargará de controlar el encendido y apagado del equipo generador de ozono, manteniendo así un nivel de concentración prefijado, dentro de un compartimento destinado a la desinfección de objetos. El sensor de gas ozono tipo MQ-131, de baja concentración, permite medir concentraciones de ozono en el aire comprendidas entre 0,01 y 1 ppm.

Medidor de la concentración de ozono en el aire

 

Concentración de Ozono en el aire

El ozono es muy bueno para desinfectar locales, ropa de trabajo, mascarillas y también alimentos. Debido a la situación actual, se están vendiendo generadores de ozono de todo tipo, y muchos de ellos orientados al uso doméstico.  El ozono, al igual que cualquier producto desinfectante, hay que utilizarlo con precaución. Es importante destacar que el ozono es un gas tóxico para los pulmones. Los generadores de ozono hay que utilizarlos en sitios cerrados y sin gente dentro.

Concentración máxima de ozono en el aire durante 8 horas

El problema que tiene el ozono frente a otros productos desinfectantes, es que es muy difícil de dosificar. El ozono es un gas muy inestable y no se puede envasar, debido a que las moléculas del ozono se recombinan muy rápidamente, convirtiéndose de nuevo en oxígeno. Cuando se utiliza el ozono como desinfectante, lo más importante es calcular el tiempo que debería estar funcionando el equipo generador. Ese tiempo dependerá del valor de concentración de ozono que necesitemos alcanzar (ppm), y varía en función de los metros cúbicos desinfectar (volumen) y de la potencia del generador.

Desinfectantes

Teniendo en cuenta que la producción de ozono de un generador varía en función de la calidad del aire (temperatura, humedad…) y además depende del rendimiento de su elemento reactor, el cual se envejece y no es muy lineal; la única manera de calcular ese tiempo sería mediante un equipo de medida, que a su vez controlara el encendido y apagado del equipo generador de ozono. Este interruptor funcionaría como el termostato de una calefacción, conectando y desconectando el generador en función de la concentración de ozono en el aire que se quisiera alcanzar.

Sensores de gas MQ

MQ  es una familia de sensores de gas, orientados a medir diferentes compuestos químicos dependiendo del modelo de sensor que se utilice. Los sensores MQ están compuestos por un elemento semiconductor (óxidos metálicos) sensible a cada tipo de gas, el cuál varía su resistencia en función de la concentración de gas en el aire.

Sensores de gas de la serie MQ

Estabilidad y Precisión de los sensores MQ

Para obtener una mayor estabilidad, los sensores MQ incorporan una resistencia calefactora, lo cual supone un consumo extra y una falta de precisión en las medidas que se realicen al poco tiempo de alimentar el sensor. Otro punto importante a considerar, es que cada modelo de sensor MQ tienen alta sensibilidad a un gas específico, pero en menor medida también reaccionan o otros gases, y esto provoca una mayor imprecisión. Por ejemplo, el sensor de ozono MQ-131 tiene una alta sensibilidad al ozono, pero también es sensible a otros gases oxidantes como el cloro y el dióxido de nitrógeno.

Módulo sensor de gas ozono MQ-131

Para obtener una precisión mínima, es necesario calibrar cada sensor, y almacenar su valor de resistencia sin presencia de gas, dentro del firmware encargado de calcular las medidas. La precisión de estos sensores depende muchos factores internos y externos difíciles de controlar (temperatura de trabajo, humedad, envejecimiento del sensor), y nunca deberían utilizarse como elemento de control en lugares críticos.

Detalles del módulo sensor de gas ozono MQ-131

Con la ayuda de un controlador programado, por ejemplo con Arduino, los sensores MQ los podemos utilizar para medir la concentración de un gas determinado, dependiendo del modelo de sensor que elijamos.  Los sensores de gas MQ pueden comprarse sueltos, pero es muy común conseguirlos ya montados en un pequeño PCB, en el cuál se incluye un circuito comparador que nos proporciona una salida digital extra, además de la propia salida analógica del sensor. A través de la resistencia variable (trimmer) que incluyen estos circuitos , podríamos prefijar un umbral máximo de gas, y disparar una alarma.

Esquema genérico, para utilizar con los sensores de tipo MQ

Medidor-Controlador de Ozono

En el caso del sensor MQ-131, muy sensible al gas Ozono, mediante esta salida digital podríamos controlar el encendido y apagado de un generador de ozono. Esto sería muy útil para mantener un nivel alto de ozono dentro de un compartimento cerrado (cabina, caja, etc.) con el fin de desinfectar objetos personales, utensilios de trabajo, ropa, etc.

Esquema del Medidor-Controlador de ozono.

Descargar el firmware

El firmware que necesitas para programar el ATMEGA328P (Arduino UNO),  los puedes descargar desde el siguiente enlace:  MQ-131_JR.rar

Cubierta del sensor, impresa en 3D

La cubierta de protección del sensor gas la he fabricado con PLA. El PCB del sensor se fija a esta cubierta sin tornillos,  calentando con un soldador los 4 resaltes de PLA que sobresalen por los orificios del PCB, una vez encajado en la cubierta.

Carcasa 3D, para el sensor de gas MQ

Los archivos que necesitas para imprimir esta cubierta de protección, los puedes descargar desde el siguiente enlace: Cover for MQ gas sensor

¿Necesitas fabricar un PCB?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos, pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay. Hasta un 30% de descuento para PCBs especiales, con fabricación en 24 horas.

Logo: PCBWay
Ahora el servicio de montaje en PCBWay por tan solo 30$, con tiempo de entrega rápido: https://www.pcbway.es/

 

 

 

 

Ionizador & Generador de Ozono, con material reciclado

Construcción de un Ionizador de aire y un Generador de ozono, utilizando materiales reciclados. A pesar de que respirar ozono en altas concentraciones puede llegar a ser tóxico, el ozono es uno de los remedios más eficaces para eliminar virus y bacterias. El ozono está formado por tres átomos de oxígeno, y es uno de los más potentes oxidantes que se conocen. El ozono es capaz de eliminar no sólo virus, sino también un amplísimo rango de otros microorganismos contaminantes presentes en el aire… y esto sin olvidar su eficacia para eliminar olores desagradables.

Generador de Ozono & Coronavirus

¿Qué es un Ionizador de aire?

Un ionizador de aire es un dispositivo que sirve para purificar el aire dentro de un entorno cerrado.

Los iones se producen al exponer las moléculas de aire a un voltaje muy alto. El  ionizador carga eléctricamente las moléculas del aire, creando iones negativos.

Ionización de partículas

Los iones negativos, debido a un proceso químico natural, se unen a partículas en el aire como polvo, bacterias o polen, lo que hace que se depositen en las superficies de la casa y no estén revoloteando en el aire. Al eliminar el polvo y el polen del ambiente, es muy útil para personas con alergias.

La diferencia entre un generador de ozono y un ionizador, es que el ozono se crea a partir de un pequeño arco eléctrico, y el ionizador sólo necesita el campo eléctrico.

Campo eléctrico

En cualquier caso, los ionizadores también generan una pequeña cantidad de ozono, y no solo iones negativos. Hay que tener cuidado, porque el ozono es un gas tóxico cuando se respira en altas concentraciones.

Generador de alta tensión

Al igual que el generador de ozono, el ionizador también necesita un generador de alta tensión. Podemos construir un generador de alta tensión con material reciclado, utilizando el balastro electrónico de una bombilla de gas (ahorradora) y un transformador de líneas de un televisor viejo (Flyback).

Generador de alta tensión, con un balastro y un transformador Flyback

Sólo tendremos que localizar el devanado primario del transformador (Flyback) y conectarlo en los dos extremos de las 4 conexiones de salida del balastro. Las dos conexiones centrales no se utilizan. Al conectar a la red eléctrica el balastro, ya obtendremos en el secundario del transformador la tensión necesaria (AT) para ionizar el aire, o generar ozono.

Esquema: Ionizador & Generador de Ozono

Difusor de iones

Para mezclar los iones con el aire, he utilizado una válvula OA3 y un trozo de malla mosquitera metálica. La válvula OA3 es un diodo estabilizador de tensión, el cuál incluye en su interior gas neón en lugar de vacío. El ánodo del diodo (placa) es el elemento más próximo al cristal, y es el que va conectado a uno de los polos del devanado secundario del transformador (devanado de alta tensión). El otro polo del devanado de alta tensión se conecta a la malla metálica exterior, la cuál envuelve el vidrio de la válvula OA3. Al estar ambos polos del devanado secundario ligeramente distantes, no se llegará a producir un arco, pero el campo eléctrico ioniza todo su entorno, tanto en el interior de la válvula como en las proximidades de la malla metálica. Así el gas neón del interior de la válvula se iluminará, y podremos saber que todo está funcionando.

Ionizador con válvula OA3

Para conseguir una buena distribución de los iones producidos en las proximidades de la válvula, el ionizador lo tendríamos que montar dentro de una caja, junto con un ventilador que hiciera circular el aire por encima de la malla metálica. También se deberían montar unos filtros de aire en la entrada del ventilador, con el fin de evitar la acumulación de partículas en la superficie del ionizador.

Generador de Ozono

El elemento reactor necesario para generar el ozono, esta construido con un trozo de plancha metálica (yo he utilizado cobre) y un trozo del mismo tamaño de rejilla mosquitera metálica. Ambos metales van conectados a cada uno de los terminales del devanado de alta tensión, y están separados por una fina capa de material aislante. El material aislante podría ser vidrio o cerámica, pero yo he utilizado dos capas de cinta auto adhesiva Kapton. Al estar ambos polos del devanado de alta tensión tan próximos, en la superficie de la rejilla metálica se formará una especie de plasma de color azulado.

Reactor del generador de ozono

Si miramos de cerca la rejilla, observaremos que ese color azulado está formado por una multitud de pequeños arcos eléctricos, que son los causantes de la descomposición de las moléculas de oxígeno y generación del ozono.

Generador de Ozono (funcionamiento)

¿Necesitas fabricar un PCB?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos, pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

Logo: PCBWay

https://www.pcbway.es/

Generador de Ozono & Coronavirus

Construcción de un sencillo generador de ozono, capaz de purificar el aire y proteger el entorno frente a bacterias, virus y malos olores.
A pesar de que respirar ozono en altas concentraciones puede llegar a ser tóxico, el ozono es uno de los remedios más eficaces para eliminar virus y bacterias. El ozono está formado por tres átomos de oxígeno, y es uno de los más potentes oxidantes que se conocen. El ozono es capaz de eliminar no sólo virus, sino también un amplísimo rango de otros microorganismos contaminantes presentes en el aire… y esto sin olvidar su eficacia para eliminar olores desagradables.

¿Es tóxico el Ozono?

¿Cómo actúa el Ozono?

OzonoEl ozono oxida la pared celular de microorganismos, provocando su rotura y propiciando así que los constituyentes celulares salgan al exterior de la célula. Pero los daños producidos sobre los microorganismos no se limitan a la oxidación de su pared: el ozono también causa daños a los constituyentes de los ácidos nucléicos (ADN y ARN), que son de especial interés en el caso de la desactivación de todo tipo de virus. Así los microorganismos no serán capaces de desarrollar inmunidad al ozono, al contrario de cómo reaccionarían frente a otros compuestos. El ozono es eficaz en la eliminación de bacterias, virus, protozoos, nematodos, hongos, agregados celulares, esporas, quistes… incluso el virus del Ébola en el aire. Por otra parte, actúa a menor concentración y con menor tiempo de contacto que otros desinfectantes. El ozono no puede ser envasado como el cloro, pero está demostrado que  su poder desinfectante es al menos diez veces más potente.

Desinfectantes

Según la Organización Mundial de la Salud (OMS), el ozono es el desinfectante más eficiente para todo tipo de microorganismos. Con concentraciones de ozono entre 0,1 y 0,2 mg/L. por min, se consigue desactivar el 99% de Rotavirus y Poliovirus, pertenecientes también al Grupo IV de los Coronavirus.

La OMS recomienda una concentración máxima de ozono en el aire, para el público en general, de 0,05 ppm (0,1 mg/m3)… teniendo en cuenta que existe un riesgo si se superasen valores de 1 mg/m3.

¿Cómo funciona un generador de ozono?

Cuando el oxígeno en el aire es sometido a un pulso de alta tensión, el doble enlace 0=0 de oxígeno se rompe, entregando dos átomos de oxígeno, las cuales se recombinan con otras de oxígeno.

Placa cerámica (Generador de Ozono)

Estas moléculas recombinadas contienen tres átomos de oxígeno en lugar de dos, y esto es lo que origina el ozono.

Generador de Ozono (funcionamiento)

Montaje del Generador de Ozono

El montaje de este generador de ozono es muy sencillo, porque sólo se necesita colocar un cable de alimentación y enchufarlo a la red eléctrica.

Kit: Generador de Ozono

Por comodidad de uso, es conveniente intercalar un interruptor en la entrada de alimentación. Por seguridad, se debería montar todo el circuito dentro de una caja aislante, y proteger su placa cerámica, encargada de generar las moléculas de Ozono, ya que es muy frágil y además está alimentada con una tensión alterna de 2,5 KV.

Generador de Ozono (Manual)

Caja impresa en 3D

La caja la he fabricado en PLA, a medida de este generador de ozono. Para la fijación de la tapa inferior, se necesitan 4 tornillos de rosca chapa.

Caja 3D

Los archivos que necesitas para imprimir esta caja, los puedes descargar desde el siguiente enlace:

Ozone generator to disinfect the air

¿Necesitas fabricar un PCB?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos, pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay. Hasta un 30% de descuento para PCBs especiales, con fabricación en 24 horas.

Logo: PCBWay

Ahora el servicio de montaje en PCBWay por tan solo 30$, con tiempo de entrega rápido.

https://www.pcbway.es/

 

 

Reparación Vitrocerámica FAGOR 2IFT-22R

Reparación de una vitocerámica de marca FAGOR, modelo: 2IFT-22R. Esta vitrocerámica es doble, con dos calentadores resistivos y otros dos de inducción que han dejado de funcionar. El teclado de control (táctil) de los calentadores de inducción no responde, y así sólo es posible utilizar los otros dos calentadores resistivos.

Vitrocerámica 2IFT-22R por dentro

Síntomas de la avería

Esta avería no se produjo de inmediato, como suele suceder en la mayoría de los dispositivos electrónicos. Unos días antes de que dejaran de funcionar los dos calentadores de inducción, sus controles de encendido funcionaban de forma intermitente… algunas veces sí y otras no. También en algunas ocasiones y en medio de la cocción, se desconectaba la placa de inducción y luego era imposible volver a conectarla.

Reparación

Con el fin de poder utilizar la cocina mientras reparaba la avería, desmonté todo el circuito relacionado con la inducción: módulo de encendido (filtro de red), módulo de control principal, tarjeta controladora del teclado táctil y las dos bobinas inductoras. Después de comprobar que funcionaba la fuente de alimentación, incluida en el módulo de control principal, observé que la placa de control táctil estaba sin alimentación. Este problema es debido a que dicha placa se alimenta sólo cuando recibe una orden (nivel alto) proveniente del microprocesador de la placa principal. Esa orden es una tensión de 5V, la cuál polariza dos transistores de la placa del teclado, haciendo estos la función de interruptor y dejando sin alimentación al teclado cuando el microprocesador principal no funciona.

Medida del control de encendido

Para comprobar si el problema estaba en el módulo de control del teclado, eliminé la orden de encendido y conecté un puente con la entrada de +5V. Así el teclado ya respondía, pero comprobé que la tensión que estaba entregando el microprocesador era baja (3,63V), al igual que la tensión de +5. Este problema se suele dar por un exceso de rizado en la fuente de alimentación, provocado por un envejecimiento, a veces prematuro, de sus condensadores electrolíticos. Debido a la antigüedad de esta vitrocerámica (19 años), decidí desoldar y medir  todos los condensadores electrolíticos.

Medida ESR

Después de sustituir todos los condensadores electrolíticos que encontré en mal estado, midiendo su capacidad y Resistencia Serie Equivalente (ESR), todas las tensiones volvieron a su valor nominal y se solucionó la avería.

Condensadores defectuosos

¿Necesitas fabricar un PCB?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos, pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay. Hasta un 30% de descuento para PCBs especiales, con fabricación en 24 horas.

Logo: PCBWay

Ahora el servicio de montaje en PCBWay por tan solo 30$, con tiempo de entrega rápido.

https://www.pcbway.es/

 

 

Reparar soldador T12-Q17

Reparación del soldador de calentamiento rápido, modelo T12-Q17. El soldador calienta a máxima temperatura, a pesar de que el regulador de temperatura actúa al mover su ajuste.

Soldador T12: Control de temperatura

Avería y solución

El soldador para electrónica T12-Q17 dispone de una conexión a tierra, la cuál conecta la toma de tierra del enchufe con el circuito de control del soldador (PCB).

Soldador T12: Toma de tierra

A pesar de que siempre he tenido la precaución de mantener desenchufados los equipos cuando los estoy reparando, cometí el error de no hacerlo en una ocasión, debido a un mal acceso con la toma de enchufe… y simplemente lo desconecté utilizando su interruptor. La mala suerte es que dicho interruptor sólo cortaba un polo de la red, y este coincidía con el neutro y no la fase. Al poner en contacto la punta del soldador con una pista del PCB, la cuál no estaba aislada de la red eléctrica, se produjo una derivación a tierra a través del soldador y saltó la protección diferencial del cuadro eléctrico. A partir de ese momento, el circuito de control de temperatura del soldador dejó de funcionar, manteniendo el soldador alimentado de forma permanente y al máximo.

PCB: T12

Por suerte, el transistor MOS-FET que controla la alimentación del soldador se puso en cortocircuito, y así protegió al resto del circuito de un exceso de tensión.

Sustitución MOS-FET

Sustituyendo el transistor AOD409, se solucionó la avería.

MOS-FET: AOD409

¿Necesitas fabricar un PCB?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos, pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay. Hasta un 30% de descuento para PCBs especiales, con fabricación en 24 horas.

Logo: PCBWay

Ahora el servicio de montaje en PCBWay por tan solo 30$, con tiempo de entrega rápido.

https://www.pcbway.es/

 

Bloqueador de llamadas telefónicas

Construcción de un bloqueador de llamadas telefónicas. El decodificador de llamadas está basado en el circuito integrado HT9032, el cuál está diseñado para recibir las señales FSK, transmitidas según el protocolo Bellcore TR-NWT-000030 y especificaciones ITU-T V.23. El sistema de bloqueo de llamadas está construido con un Arduino UNO, junto con su shield LCD, el cuál incluye una botonera de control. Para almacenar la información de las llamadas entrantes y los números de teléfono que se deben bloquear, se utiliza un lector de tarjetas SD/MicroSD, especialmente diseñado para funcionar con Arduino.

Decodificador HT9032

El circuito integrado HT9032 está diseñado para identificar las llamadas telefónicas. La interfaz de señalización de datos debe cumplir con el estándar Bell 202, que se describe a continuación:

  • Sistema análogo, fase coherente, cambio de frecuencia
  • 1 lógico (marca) = 1200 + / 12 Hz
  • 0 lógico (espacio) = 2200 + / 22 Hz
  • Velocidad de transmisión = 1200 bps
  • Aplicación de datos = serial, binario, asíncrono

La interfaz debe estar dispuesta para permitir datos simples de transmisión, desde la central de telefonía hacia la CPE (Equipo de instalaciones del cliente), solo cuando CPE está en estado colgado. Los datos serán transmitidos en el período de silencio entre el primer y el segundo tono de la llamada, antes de que se establezca la comunicación de voz. El nivel de transmisión será -13.5 dBm. (+/-1 dB) y la atenuación máxima entre puntos de 20 dB. El receptor por lo tanto, debería tener una sensibilidad de aproximadamente de -34.5 dBm, para poder decodificar la información en el peor de los casos. El estándar ITU-T V.23 también utiliza la codificación FSK, sistema utilizado para transmitir datos a través de la red telefónica conmutada. Para el modo 2 del V.23, la velocidad de modulación y frecuencias características se detallan a continuación:

  • Sistema análogo, fase coherente, cambio de frecuencia
  • 1 lógico (marca) = 1300 Hz
  • 0 lógico (espacio) = 2100 Hz
  • Velocidad de transmisión = 1200 bps

Diagrama de estados: HT9032C

Dado que el filtro de paso de banda del circuito integrado HT9032 permite pasar la señal V.23,  el HT9032 también puede demodular señal V.23

Pinout: HT9032C

Detección de la llamada

Los datos de identificación de llamada se transmiten en el período de silencio, entre el primer y el segundo tono de llamada antes de establecer la comunicación de voz. El HT9032 primero debe detectar un tono válido, para luego realizar la demodulación FSK. El montaje típico a utilizar, sería rectificar primero la señal telefónica mediante un puente de diodos, y luego enviarla a una red de resistencias con el fin de atenuar el nivel de tensión entrante. Los valores de las resistencias y condensadores de desacoplo, deben elegirse para obtener un voltaje suficiente en el pin RDET1, el cuál espera recibir como mínimo 40 Vrms en la entrada de las línea cuando se reciba la señal del RING. Cuando se supera la tensión de disparo en RDET1, el transistor NMOS conducirá, descargando el condensador conectado al pin RTIME. Esto iniciará un encendido parcial, tan solo de las partes del circuito involucradas en el análisis de la señal de llamada, incluido el pin RDET2. Con el pin RDET2 habilitado, una porción de la señal alterna del RING (la que supere 1.2 V), se conducirá al circuito de análisis del RING. Una vez que se identifica la señal de llamada, el pin RDET se pondrá a nivel bajo.

Detección de llamada (HT9032C)

Normalmente, el pin PDWN y el pin RTIME controlan el modo de operación del HT9032. Cuando ambos pines están a nivel ALTO, el HT9032 quedará configurado en el modo apagado, consumiendo menos de 1uA. Cuando llega un RING válido, el pin RTIME se pondrá a nivel BAJO, y el chip quedará habilitado. Este es el modo de encendido parcial, consumiendo aproximadamente 1,9 mA. Una vez que el pin PDWN quede a nivel BAJO, el circuito quedará completamente encendido, y listo para recibir señal FSK. Durante este modo, el consumo de corriente aumentará a aproximadamente 3,2 mA. Después de recibir el mensaje FSK, se puede permitir que el pin PDWN regrese a VDD, y el circuito volverá al modo de apagado.

Identificador/Bloqueadro de llamadas (esquema)

Descargar el firmware

El firmware que necesitas para programar el ATMEGA328P (Arduino UNO),  los puedes descargar desde el siguiente enlace: Call_Ident.rar

¿Necesitas fabricar un PCB?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos, pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay. Hasta un 30% de descuento para PCBs especiales, con fabricación en 24 horas.

Logo: PCBWay

Ahora el servicio de montaje en PCBWay por tan solo 30$, con tiempo de entrega rápido.

https://www.pcbway.es/

 

 

Monitor FM-RDS v2

Construcción de un pequeño receptor de radio de FM con RDS, orientado al personal de mantenimiento de los centros emisores de radio. La idea es construir un pequeño receptor de radio que decodifique la información más relevante del RDS, para poder controlar el correcto funcionamiento de la información que se está transmitiendo por la subportadora RDS de cada transmisor.

PCB: SI4703Este receptor es la segunda versión, utilizando el módulo SI4703, en lugar del RDA5807M que monté anteriormente:

Monitor FM-RDS

Módulo receptor FM-RDS: SI4703

El módulo SI4703, incluye un completo receptor de radio en FM: sintonizador, demodulador FM, decodificador estéreo, decodificador RDS y un pequeño amplificador de audio estéreo de 150mW.

Módulo receptor FM-RDS: SI4703

 

Este módulo se alimenta con una tensión continua de 3,3V, la configuración y el control se realiza mediante el bus I2C y la toma de antena está acoplada al hilo común de los auriculares. De esta forma, el cable de los auriculares hace de antena.

Receptor FM-RDS con: SI4703

Este sencillo receptor de radio está basado en el módulo SI4703, de bajo coste y altas prestaciones. Este módulo incluye en su interior todo el receptor de radio, incluso el decodificador Estéreo, el decodificador RDS y un pequeño amplificador de audio. Para controlar este módulo, he utilizado el micro-controlador ATMEGA328P (Arduino).

Esquema: Radio LCD con SI4703

Descarga de ficheros

El firmware y librerías que necesitas para programar el ATMEGA328P,  los puedes descargar desde el siguiente enlace: Radio_SI4703.rar

¿Necesitas fabricar un PCB?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos, pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay. Hasta un 30% de descuento para PCBs especiales, con fabricación en 24 horas.

Logo: PCBWay

https://www.pcbway.es/

Ahora el servicio de montaje en PCBWay por 30$, con envío GRATUITO mundial:
https://www.pcbway.es/quotesmt.aspx