En hora con DCF77

Desde hace años, los sistemas de sincronización horaria han ido evolucionando. No hace mucho tiempo, todos los relojes de uso doméstico había que ponerlos en hora de forma manual cada cierto tiempo. Cada vez que se hacía un cambio oficial de la hora, teníamos que ajustar de forma manual la hora del PC, el reloj de todos electrodomésticos,  los equipos de audio y grabación de video, el reloj del automóvil, etc. Actualmente con Internet, esto ha cambiado mucho. Todos los equipos que disponen de una conexión a Internet, tienen la posibilidad de mantener con gran precisión la información de fecha y hora, y ajustar los cambios de hora de forma automática. Sin embargo, desde hace muchos años existen sistemas de sincronización horaria, incluso anteriores a la aparición del GPS. Uno de los sistemas más utilizados en Europa, es el DCF77.

¿Qué es DCF77?

DCF77 es una estación de radio situada en Alemania, que transmite en onda larga (LW). Comenzó a funcionar como una estación de frecuencia estándar el 1 de enero de 1959, y a partir de junio de 1973 se incorporó en la transmisión la información de la fecha y la hora.

Cobertura DCF77

El transmisor DCF77 está controlado por Physikalisch-Technische Bundesanstalt (PTB), el laboratorio nacional de física de Alemania, y transmite en funcionamiento continuo (24 horas).

Transmisor DCF77

El transmisor es operado por Media Broadcast GmbH (anteriormente una subsidiaria de Deutsche Telekom AG ), en nombre del laboratorio nacional de física PTB.

Physikalisch-Technische Bundesanstalt (PTB)

La frecuencia portadora de la señal DCF77 es de 77,5 kHz (aproximadamente 3.868,3 m. de longitud de onda) y se genera a partir de relojes atómicos locales que están vinculados con los relojes maestros alemanes en el el laboratorio nacional de física de Alemania en Braunschweig. La señal horaria del DCF77 se utiliza para la difusión del tiempo legal nacional en Alemania.

Reloj atómico CS2

La transmisión DCF77 marca segundos al reducir la potencia de la portadora durante un intervalo que comienza cada segundo. La duración de la reducción se varía para transmitir un bit de código por segundo, codificando toda la información de fecha y hora a lo largo de cada minuto.

Modulación de amplitud

La señal DCF77 utiliza la codificación de cambio de amplitud para transmitir información de tiempo, codificada digitalmente al reducir la amplitud de la portadora hasta un 15% de lo normal (−16,5 dB) durante 0,1 o 0,2 segundos al comienzo de cada segundo. Una reducción de 0,1 segundos indica un 0 binario; y una reducción de 0,2 segundos indica un 1 binario. Como un caso especial, el último segundo de cada minuto se marca sin reducción de la potencia portadora. La portadora DCF77 está sincronizada de modo que el cruce por cero ascendente se produce al inicio de cada segundo. Todos los cambios de modulación también ocurren al aumentar los cruces por cero.

Modulación en amplitud DCF77

Hasta el año 2006 también hubo una identificación de la estación con el código Morse, que se enviaba durante los minutos 19, 39 y 59 de cada hora. Finalmente se suspendió, ya que la estación es fácilmente identificable por su señal característica. Se generaba un tono de 250 Hz mediante la onda cuadrada que modula la portadora entre el 100% y el 85% de potencia, y el distintivo de llamada era “DCF77“.

Modulación de fase

Además de la modulación en amplitud, durante 792,78 mSeg. y a partir de 200 mSeg., cada bit de código de tiempo se transmite utilizando un espectro ensanchado de secuencia directa. El bit se mezcla con una secuencia de chips pseudoaleatorios de 512 bits, y se codifica en la portadora utilizando el cambio de fase de ±13°. La secuencia de chips contiene cantidades iguales de cada fase, por lo que la fase promedio permanece sin cambios. Cada chip abarca 120 ciclos de la portadora, por lo que la duración exacta es de los ciclos 15.500 a 76.940 de 77.500. Los últimos 560 ciclos (7,22 mSeg) de cada segundo no están modulados en fase.

Modulación en amplitud y fase del transmisor DCF77

Dentro de la modulación de fase, el bit 59 se transmite como un bit 0 ordinario, y los primeros 10 bits (segundos 0–9) se transmiten como 1 binario.

Cuando se compara con la modulación de amplitud, la modulación de fase hace un mejor uso del espectro de frecuencia disponible y da como resultado una distribución de tiempo de baja frecuencia más precisa con menos sensibilidad a las interferencias. Sin embargo, muchos receptores DCF77 no utilizan la modulación de fase. La razón de esto es la disponibilidad mundial de las señales (referencia horaria precisa) transmitidas por los sistemas de navegación global por satélite como el Sistema de Posicionamiento Global (GPS) y GLONASS .

Interpretación del código de tiempo

El tiempo se representa en decimal codificado en binario. Representa el tiempo civil, incluidos los ajustes de horario de verano. El tiempo transmitido es el correspondiente al minuto siguiente. Por ejemplo, a las 23:59 del próximo 31 de Diciembre de 2019, se transmitiría la información de las 00:00 del 1 de Enero de 2020.

Codificador DCF77

La modulación de fase generalmente codifica los mismos datos que la modulación de amplitud, pero difiere para los bits 59 a 14, inclusive. El bit 59 (sin modulación de amplitud) se modula en fase como un bit 0. Los bits 0–9 se modulan en fase como 1 bits, y los bits 10–14 se modulan en fase como 0 bits. La información de protección civil y la información meteorológica no se incluye en los datos modulados en fase.

Dos indicadores advierten que los cambios ocurrirán al final de la hora actual: un cambio de zonas horarias y una inserción de segundo intercalar (esta operación se realiza para ajustar los relojes con el calendario solar). Estas indicaciones están presentes durante toda la hora anterior al evento. Esto incluye el último minuto antes del evento, durante el cual los otros bits del código de tiempo (incluidos los bits indicadores del huso horario) codifican la hora del primer minuto después del evento. Los bits de zona horaria pueden considerarse una representación codificada en binario del desplazamiento UTC . El conjunto Z1 indica UTC+2 , mientras que Z2 indica UTC+1. En el caso de un segundo intercalar, se inserta un bit 0 durante el segundo 59, y el bit faltante especial se transmite durante el segundo salto, segundo 60.

Los primeros 20 segundos son indicaciones especiales. Los minutos se codifican en los segundos 21–28, las horas durante los segundos 29–34 y la fecha en los segundos 36–58. Aunque el código de tiempo solo incluye dos dígitos del año, es posible deducir dos bits de siglo utilizando el día de la semana. Aún así existe ambigüedad cada 400 años, ya que en el calendario gregoriano se repiten semanas cada 400 años, pero esto sería suficiente para determinar qué años de los que terminan en 00, son años bisiestos.

Sincronización de redes con DCF77

DCF77 se creó para cubrir la necesidad que existía de disponer de un sistema de sincronización vía radio, con gran cobertura y la precisión de un reloj atómico. La señal DCF77 se utiliza para sincronizar sistemas de seguimiento a satélites, telescopios, redes transmitiendo en isofrecuencia (SFN), etc.

Red de transmisores en isofrecuencia

¿Necesitas fabricar un circuito impreso?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

Logo: PCBWay

https://www.pcbway.es/

 

 

Frecuencímetro digital

Montaje y pruebas de funcionamiento de un frecuencímetro digital. Este frecuencímetro está construido a partir de un PIC16F628A, y puede medir frecuencias entre 1 Hz y 50 MHz. El frecuencímetro también incorpora en el PCB un pequeño oscilador, con un zócalo para insertar cristales de cuarzo y comprobar con precisión su frecuencia.

Frecuencímetro: PCB montado

Origen de este frecuencímetro

Este frecuencímetro se puede conseguir en KIT a través de Internet a un precio muy asequible. Existen muchas variantes de este frecuencímetro, en concreto el que he comprado yo, incluye en el mismo PCB un comprobador de cristales de cuarzo. No obstante, el corazón de este frecuencímetro es un PIC16F628A, y normalmente todos los modelos llevan cargado el firmware que desarrolló un radioaficionado de origen alemán.

Como me parece justo el destacar la autoría y origen de los diseños, a continuación os adjunto el link de acceso al frecuencímeto de Wolfgang “Wolf” Büscher, DL4YHF:

https://www.qsl.net/dl4yhf/freq_counter/freq_counter.html

Montaje del kit

El montaje de este kit es muy sencillo, a pesar la escasa información que se adjunta, y su pésima calidad de impresión. Siguiendo la serigrafía del PCB, se pueden localizar con facilidad el valor de todos los componentes.

Debido a la pésima calidad del esquema que se adjunta con el kit, he creado un esquema nuevo a partir del diseño de Wolfgang. 

Esquema: Frecuencímetro digital

Observar que en este esquema ya está modificado el circuito de entrada del frecuencímetro. He añadido un pequeño amplificador de RF, con el fin de proteger la entrada del PIC, y permitir la medida de señales de baja amplitud.

Frecuencímetro: consumo en funcionamiento

Con esta modificación el consumo aumenta alrededor de 6 mA, pero así es posible medir señales a partir de 100 mVpp, en lugar de los 2..3 voltios que se necesitarían sin el amplificador. Además, así se evita que se pueda quemar la entrada del PIC, debido a un pico de tensión inesperado. Por ora parte,  el amplificador de entrada incluye un varistor, el cual limitará la tensión de entrada a 30V, evitando así también la llegada de algún pico de tensión hacia el transistor (amplificador de entrada).

¿Necesitas fabricar un circuito impreso?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos (PCB), pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

Logo: PCBWay

https://www.pcbway.es/

 

 

Interruptor inteligente

Diseño y construcción de un interruptor inteligente, capaz de cortar la alimentación de todos los dispositivos conectados en una regleta de enchufes. El circuito detecta el consumo en una toma de red (Master), y desconecta todo (incluido el propio controlador) cuando se apaga el dispositivo conectado a la toma ‘Master’. Así en reposo (Standby), el consumo total de todo el conjunto será nulo.

Regletas de RED inteligentes

Buscando un poco por Internet, podemos encontrar regletas de alimentación inteligentes. La mayoría de ellas nos permiten conectar y desconectar la alimentación de todos los enchufes desde un dispositivo móvil, programar la hora de encendido y apagado, incluso medir el consumo y  calcular su coste.

Regletas inteligentes en Internet

El uso de regletas inteligentes podría suponer un gran ahorro energético, pero hay que tener en cuenta que estas regletas de por sí ya incorporan un consumo extra… y su circuito de control consume energía las 24 horas del día.

Interruptor inteligente

La idea de este montaje, es la de conseguir el apagado automático de una serie de dispositivos, al detectar el apagado del equipo principal (Master). Por ejemplo, si conectamos a la toma principal  de este circuito la CPU de nuestro PC,  y el resto de dispositivos (monitor, impresora, escáner, etc)  a la toma auxiliar; al desconectar la CPU se desconectaría la alimentación de todo el conjunto… incluso la del propio circuito de control. De esta manera no quedaría ningún equipo consumiendo en modo ‘Standby’, y el consumo total sería nulo.

Interruptor inteligente montado

A continuación se muestra el esquema del circuito de control, encargado de cortar la alimentación en todas las tomas de red, cuando detecte un caída de consumo en la toma ‘Master’.

Esquema: Interruptor inteligente

Las tensiones que obtendremos como muestra en la entrada del ATtiny cambiarán dependiendo de la inductancia y características del transformador que utilicemos (filtro EMI), además del tipo de carga que conectemos en la toma ‘Master’ (carga reactiva o lineal).

Principio de funcionamiento

El circuito está basado en la transferencia de tensión que aporta una de los dos  bobinas de un filtro EMI, al paso de la corriente de RED por el otro devanado.  Este montaje funciona como un transformador de corriente, entregando una tensión en el devanado secundario, proporcional a la corriente que circule por el primario. En este caso, la transferencia de tensión no es lineal con la potencia, pues dependerá del tipo de carga que conectemos en la toma ‘Master’. Si la carga se comporta como una resistencia pura,  la transferencia de tensión será menor que si tuviera una componente reactiva.

Medidas de tensión con diferentes cargas

El circuito detector de umbral está construido con Arduino, utilizando un ATtiny 85. Este pequeño micro controlador tiene sólo 8 pines y puede funcionar con un oscilador interno, lo que permite hacer uso de casi todos sus terminales.

Calibración y ajuste de los umbrales

En este montaje se han dedicado dos pines del ATtiny para poder configurar hasta 4 umbrales distintos de funcionamiento. Así podemos elegir el umbral de detección más adecuado al equipo que vayamos a conectar en la toma ‘Master’. Como es lógico suponer, los 4 umbrales los podremos calibrar y modificar con Arduino, antes de programar el ATtiny.

Ajuste y calibrado de los umbrales

Para facilitar el ajuste de los umbrales y la calibración de la escala, podemos cargar el código ‘Regleta_TEST.ino’ que se adjunta en la descarga, y utilizar la placa de desarrollo Arduino UNO. Para realizar este ajuste, colocamos un potenciómetro de 10K entre el positivo y negativo de la fuente de 5V, y conectamos el cursor del potenciómetro con la entrada A2 de Arduino UNO. El proceso a seguir para la calibración de la escala y fijación de los umbrales. se explica en el video final.

Los archivos que necesitas para programar el Arduino UNO y el ATtiny, lo puedes descargar de forma gratuita desde el siguiente enlace:

Interruptor_I.rar

¿Dónde fabricar el PCB?

Actualmente hay muchas empresas que se dedican a fabricar circuitos impresos, pero no en todas podemos conseguir pequeñas tiradas a buen precio. Por suerte, ahora disponemos de Internet y es mucho más fácil que antes. Podemos buscar empresas en cualquier parte del mundo, y es más fácil encontrar un fabricante que haga nuestros prototipos (PCB) a buen precio. Una de las empresas más grandes del sector es PCBWay.

Logo: PCBWay

https://www.pcbway.es/

PCB: Interruptor inteligente

 

Acceso a los GERBER de este PCB

PCB from PCBWay

Link of my shared project

Descarga del ficheros 3D:

Intelligent switch

Diseño 3D

 

 

 

 

 

 

 

Reloj con control remoto

Desarrollo de un nuevo firmware para el kit EC1204B, reloj LED con esfera rotante. Con esta actualización es posible controlar todas las funciones del reloj a distancia, utilizando un interface serie RS-232, USB o Bluetooth.

Reloj controlado por Bluetooth

Configuración manual del reloj

El reloj FC-209 se puede configurar en modo manual, utilizando los 3 pulsadores que lleva en su parte trasera. A continuación se muestra el diagrama de configuración, válido para este kit (FC-209) como para el reloj de pared, mediante el uso de sus 3 pulsadores.

Diagrama de programación
Diagrama de programación

Tipos de interface serie

Con esta última actualización del firmware (5.1), es posible controlar y programar el reloj a distancia. Lo único que se necesita es conectar un interface serie con el reloj, ya sea por cable (RS-232/USB) o inalámbrico (Bluetooth). En la siguiente imagen se muestran las conexiones necesarias, para conectar un interface RS-232 con el reloj.

Interface RS-232 básico

En la siguiente imagen se muestran las conexiones entre el reloj y el interface serie, utilizando uno de tipo USB y otro Bluetooth
Conexión del interface BT con el reloj

Interface serie Bluetooth

Antes de conectar un interface de tipo Bluetooth con el reloj, es necesario configurar como mínimo su velocidad. El sistema Bluetooth permite la comunicación inalámbrica entre dispositivos, transmitiendo la información a la máxima velocidad que le permita el sistema. El terminal BT receptor dispone de un buffer en el que almacena los datos recibidos, y los entrega al equipo remoto con la velocidad (bps) a la que haya sido programado. En este caso, el reloj espera recibir los datos  a 4800 bps (4800,N,8,1)

Configuración del interface Bluetooth

Configuración remota del reloj

A través del interface serie y mediante una aplicación instalada en un PC o dispositivo móvil, es posible configurar y controlar el reloj en modo remoto. Los datos que espera recibir el reloj son siempre caracteres de texto, facilitando así el uso de cualquier software ‘Terminal’ y tecleando las cadenas de texto en su editor.

Lista de comandos serie (4800,N,8,1)

En caso de recibir información serie, el reloj enviará una respuesta indicando si ha recibido información correcta o ha detectado algún error. Pero siempre hay que tener la precaución de enviar los valores correctos, porque el reloj no analiza los datos que recibe, solamente comprueba los caracteres de control de inicio (color rojo) y los comandos (color verde y negro) que le indican lo que debe hacer con la información que recibe y guarda en memoria (color azul).

Actualizar el firmware del reloj

Para programar el micro-controlador de este kit de reloj, podemos utilizar un interface serie (ISP: In-system programming / ICSP : In-Circuit Serial Programming) . En la imagen siguiente podemos ver el conexionado que se debería utilizar entre el programador TL866A y el reloj.

Lo ideal sería utilizar un programador que tuviera dicho interface, o desmontar el chip y programarlo fuera.  En caso de que no dispongas de un programador, podrías hacerlo por ICSP con ARDUINO.

El archivo que necesitas para programar este reloj (firmware), lo puedes descargar de forma gratuita desde el siguiente enlace:

J_RPM_v5.1_EC1204B.HEX

Circuitos impresos

PCBWay es un fabricante de circuitos impresos para electrónica, especializado en la fabricación de prototipos de calidad profesional a un precio muy reducido. Por ejemplo, ahora puedes encargar 10 circuitos impresos de 10×10 cms, a doble cara y con serigrafía, por tan sólo 5 dólares.

Logo: PCBWay

https://www.pcbway.es/

 

Piratas en la WEB

¿Es posible que desaparezca un hosting de pago sin previo aviso?. Si tienes un blog alojado en un hosting, aunque sea de pago, deberías hacer un backup de todo su contenido y guardarlo en un lugar seguro. Si yo no lo hubiera hecho así, habría perdido toda la información que he ido recopilando a lo largo de los años.

Pérdida de un alojamiento WEB

Alojamiento WEB

Si algo he aprendido desde que contraté mi primer alojamiento Web, es la inseguridad que se siente al depositar todo tu trabajo en un lugar ajeno, y teniendo un desconocimiento absoluto del lugar físico en el que están almacenados los datos, aparte del posible mal uso que podrían hacer de ellos .

 

Alojamiento WEB

Aunque contrates un alojamiento de pago, nunca podrás estar seguro de que algún día podrías perder todos tus datos. Esta inseguridad me hizo pensar lo importante que es disponer de un archivo de respaldo con todo el contenido, actualizarlo de forma periódica, y guardarlo fuera del propio alojamiento WEB.

Archivos backup

¿Es tóxico el Ozono?

Reparación de un generador de ozono de uso doméstico. El ozono se utiliza desde hace muchos años como bactericida, y también con fines medicinales. Existen muchas terapias con el ozono, pero siempre son tratadas como complementarias a la medicina tradicional, y suelen crear polémica debido al efecto tóxico que provoca cuando entra en contacto con el epitelio pulmonar.

Capa de ozono

La capa de ozono se encuentra en la estratosfera, a una altura aproximada comprendida entre los 15 y 50 Kms. de la Tierra. Esta zona contiene una alta concentración de ozono, aproximadamente el 90 % de todo el ozono de la atmósfera.

Capa de ozono

La capa de ozono absorbe entre 97 y el 99 % de la radiación ultravioleta de alta frecuencia, proveniente del Sol. Para nosotros actúa como un escudo protector, y también ayuda a mantener el balance biológico en la biosfera.

Usos del ozono

El ozono se utiliza desde hace muchos años como bactericida, y también con fines medicinales.

Usos del ozono

Existen muchas terapias con el ozono, pero siempre son tratadas como complementarias a la medicina tradicional, y suelen crear polémica debido al efecto tóxico que provoca cuando entra en contacto con el epitelio pulmonar.

Toxicidad del ozono

Cuando se aplica el ozono terapeúticamente, siempre se tiene que evitar que entre en contacto con el sistema respiratorio.

Generador electrónico de ozono

Generador de ozono

Actualmente es posible comprar un generador de ozono con fines domésticos.

Funcionamiento de un generador de ozono

Son muy útiles para desinfectar alimentos, o como purificadores del aire. El ozono es capaz de matar todo tipo de bacterias y virus, pero es importante evitar su uso en sitios poco ventilados y evitar respirarlo.

 

 

Reparación y programación CPU-SMD

Reparación y programación del firmware en una CPU de tipo SMD. Comprobación del estado de las soldaduras del microprocesador, con la ayuda de un microscopio.

Microscopio para electrónica

Con el paso del tiempo, todos los dispositivos electrónicos han ido adoptando la tecnología SMD,  pudiendo así integrar más funciones en espacios pequeños y reduciendo notablemente sus costes de fabricación. Al mismo tiempo, las herramientas de trabajo para electrónica han ido evolucionando, siendo necesario el uso de lupas de aumento, cuando se necesita inspeccionar el estado de las soldaduras de los componentes SMD en el circuito impreso. La alternativa a la lupa, es utilizar un microscopio que consiga mantener un buen foco y calidad de la imagen, dejando la distancia suficiente entre la óptica y el PCB para poder realizar trabajos de soldadura.

Inspección de la CPU con el microscopio

Microscopio para electrónica, con GearBest

Reparación de una CPU con tecnología SMD

Un fallo muy común en cualquier dispositivo electrónico, es una soldadura fría o una pista del circuito impreso abierta. A pesar de que esta CPU nunca ha funcionado, ya que se trata de un montaje nuevo, siempre es aconsejable comprobar que todos sus componentes electrónicos sean del valor adecuado, y que todas las soldaduras estén bien hechas.

CPU vista en el microscopio

La mejor forma de comprobar si una soldadura está bien hecha o no, es mover el componente electrónico mientras se observa el punto de soldadura. Cuan se trata de componentes de tipo SMD, es necesario utilizar un alfiler o punzón bien afilado para mover los terminales y comprobar que no se muevan.

Pin desoldado

En el siguiente video se muestra todo el proceso a seguir, para comprobar y programar la CPU de un reloj digital con tecnología SMD.

Panel LED – 25W

Sustitución de un punto de luz con bombilla por un panel de iluminación LED de 25 W. La ventaja principal de montar un panel LED, es el poco espacio que abulta y su gran reparto de luz. El panel LED que he montado es de 220 x 220 mm, tamaño casi idéntico al plafón que tenía montado, pero a cambio su luminosidad y reparto de luz es mucho mejor que antes.

Rendimiento lumínico del LED

El rendimiento lumínico es el cociente entre el flujo luminoso emitido por una fuente de luz,  y la potencia consumida por dicha fuente. La unidad de medida es el  lumen por vatio (Lm/W).  El rendimiento lumínico de un LED es muy alto, normalmente varía entre 80 y 120 Lm/W. La tecnología LED es la mejor opción a la hora de sustituir cualquier tipo de luminaria antigua.

Panel de iluminación LED

Los paneles de iluminación LED son los más adecuados para sustituir las antiguas luminarias de techo con tubos fluorescentes. Otra opción, si no se quiere sustituir la carcasa de la luminaria, sería sustituir los tubos fluorescentes por tubos LED.

Tubos LED

 

Actualmente se fabrican paneles LED de diferentes tamaños y formas: cuadrados, rectangulares, redondos.

Paneles LED

El tamaño de un panel está directamente relacionado con su potencia, lo que se traduce en luminosidad. Los paneles LED son muy adecuados para estancias con techos muy bajos, y donde se requiera un gran reparto de luz sin sombras.

Panel LED de 25 W

Con el fin de mejorar la iluminación en una estancia que tiene el techo muy bajo, he comprado un panel LED de 220 x 220 mm. Como no tenía muy claro si la sustitución iba a ser definitiva, busqué la opción más barata para hacer la prueba,  y luego decidir si el cambio es definitivo o no. La habitación tenía dos puntos de luz en el techo, dos plafones redondos con bombillas LED de 9W, y he sustituido uno de ellos por un panel LED de 25W.

Panel LED - 25W

Como el panel LED que compré es de empotrar, he tenido que hacer una carcasa para poder sujetarlo en el techo. La carcasa está hecha a medida con la impresora 3D, y el material que he utilizado es PETG.

Soporte del panel LED

El soporte del panel LED está sujeto al techo con 4 tornillos, uno en cada esquina. El driver de corriente constante y el cableado también los he sujetado al techo con tornillos. El sistema de fijación del panel LED con la carcasa está compuesto por 8 imanes de neodimio, 4 de ellos pegados en el panel LED y los otros cuatro fijados por el exterior del soporte con cinta adhesiva de doble cara.

Diferencia lumínica Bombilla/Panel

Una vez enfrentados los imanes, las 4 caras del panel quedan inmóviles y se sujetan con fuerza a la carcasa. La diferencia lumínica entre el plafón que tenía antes y el panel LED es notable. Además de aumentar la luminosidad, el reparto de luz es mucho más uniforme que antes, y se producen menos sombras.

Descarga del fichero 3D

Ceiling support, to mount a LED panel of 220×220 mm.

 

Base de trabajo LED

Construcción de una pequeña base luminosa LED, para utilizarla en trabajos de electrónica. Esta plataforma es similar a las tabletas luminosas LED que se venden para dibujar. El tamaño es de 120×120 mm y está hecha con una impresora 3D. El material que he utilizado es PETG, así la base es más robusta y se puede trabajar encima apoyando circuitos impresos, pequeños mecanismos, etc. Esta plataforma es muy útil para comprobar las soldaduras de un componente SMD, o comprobar el estado de las pistas del circuito impreso, teniendo las dos manos libres para reparar lo que hiciera falta.

Tableta LED

Tableta LED

Comercialmente existen unas tabletas luminosas LED, que van alimentadas a 5V mediante un conector USB. Estas tabletas tienen muchas utilidades, porque aparte de iluminar, se pueden utilizar para calcar un dibujo o circuito impreso, revisar negativos o diapositivas fotográficas.

Revisión SMD

También son muy útiles para comprobar el estado de las soldaduras de un componente SMD, sin tener que colocar una linterna debajo. Podríamos apoyar el circuito impreso encima de la tableta y tener las dos manos libres para reparar lo que hiciera falta.

Fabricar una base LED

Fabricar una base luminosa no es muy complicado. Colocando unas tiras LED entre dos láminas de plástico sería suficiente. Para conseguir un mejor acabado, las piezas de plástico las he hecho a medida con una impresora 3D. El material que he utilizado es PETG, por ser más resistente y aguantar mas temperatura que el PLA. Esta base puede utilizarse para algunas reparaciones o montajes, en los que es necesario iluminar la pieza desde abajo.

Montaje con luz LED

Al ser esta base luminosa tan  pequeña (120×120 mm), se podría utilizar como si fuera una linterna. Otra ventaja es que también es estrecha,  y así podría iluminar desde dentro cualquier equipo sin apenas ocupar sitio.

Base luminosa LED

Alimentación de la base LED

Esta base LED se alimenta con 5 VDC, pudiendo utilizar cualquier cargador USB  o una Power Bank. Para que esto sea posible, es necesario que el cable de alimentación termine en un conector USB macho de tipo A. Los hilos de alimentación hay que conectados en los extremos del conector USB, y respetando la polaridad.

Conexiones USB

Descarga del ficheros 3D

Base impresa en 3D

LED work platform (120x120mm)

 

Construye tu bombilla LED

Un buen diseño en una bombilla LED, es fundamental para alargar al máximo su vida útil. En la actualidad hay muchos fabricantes que ahorran en la calidad y número de componentes en sus diseños. En muchos casos fuerzan al máximo las prestaciones de los LED, con el único fin de buscar su máxima luminosidad posible al menor precio. A pesar de que nunca merezca la pena fabricar algo que comercialmente ya exista, si ya tenemos todos los materiales necesarios para fabricar una bombilla LED, sí podría ser interesante diseñar y fabricar nuestra bombilla… con altas prestaciones y lo más fiable posible.

Bombilla LED

Diseño de una bombilla LED

Cuando se diseña una bombilla destinada a la iluminación, lo más importante es buscar el mejor rendimiento lumínico. Pero también es muy importante buscar un equilibrio, entre el rendimiento y su vida útil. Si hacemos un diseño haciendo trabajar al LED en su punto máximo,  sin dejar un pequeño margen de seguridad, sucederá lo mismo que con un motor de F1.

Las prestaciones de un motor de F1 son excelentes,  pero a cambio su vida útil es muy corta.

Bajo mi punto de vista, nunca merece la pena fabricar algo que comercialmente ya exista. Si compramos los componentes y materiales necesarios para fabricar una bombilla LED, siempre nos saldrá más cara que lo que pagaríamos por  otra que tuviera las mismas prestaciones, mejor acabada y además de marca reconocida. A pesar de esto, si ya tenemos todos los materiales necesarios para fabricar una bombilla LED, podría ser interesante fabricar una a medida… con alta luminosidad y lo más fiable posible.

Componentes de al bombilla LED

Driver de corriente constante

Driver de corriente constante

Descarga del fichero 3D

Tulipa 3D

Build your LED bulb